|Table of Contents|

Numerical analysis of H2 transpiration cooling for thrust chamber porous plate(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2012年05期
Page:
13-17
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical analysis of H2 transpiration cooling for thrust chamber porous plate
Author(s):
GAO Xiang-yu SUN Ji-guo TIAN Yuan
Beijing Aerospace Propulsion Institute, Beijing 100076, China
Keywords:
transpiration coolingnumerical calculationporous plateH/O rocket enginethrust chamber
PACS:
V434+.14
DOI:
-
Abstract:
In order to investigate the transpiration cooling characteristics of H/O rocket engine thrust chamber injector porous plate, the one-dimensional local thermal non-equilibrium numerical model was adopted to conduct the heat transfer computation and analysis. The hydrogen coolant thermo-physical properties varied with both temperature and pressure, and heat transfer between the porous media and coolant were considered for the computation model. The influence of porous media thermal conductivity, porosity, sphere diameter and heat flow density on porous plate transpiration cooling were analyzed. The investigation demonstrates that optimization of porous plate material with high thermal conductivity can reduce the gas side plate temperature and temperature gradient of porous plate. The porosity should be 0.1~0.2. The heat transfer capacity between the porous media and coolant is obviously reduced with the increase of sphere diameter, but the temperature of the gas side plate decreases at first and then increases.

References:

[1]HUDSON L, STEPHENS C. The X-37 hot structure control surface testing[R]. USA: NASA 2006.
[2]BUCCHI A, BRUNO C. Transpiration cooling performance in LOX/Methane liquid-fuel rocket engines[J]. Journal of Spacecraft and Rockets, 2005, 42(3): 50-59.
[3]BUCCHI A, CONGIUNTI A, BRUNO Claudio. Investigation of transpiration cooling performance in LOX/Methane liquid rocket engines[J]. IAC, 2003 (10): 22-26.
[4]刘双, 张博明, 解维华. 可重复使用航天器金属热防护系统的结构优化进展[J]. 航天制造技术, 2007 (3): 43-48.
[5]EMRE S, WEI S. Modeling of fluid dynamics and heat transfer through porous media for liquid rocket propulsion, AIAA 2007-5549 [R]. USA: AIAA, 2007.
[6]于淼, 姜培学. 发汗冷却过程中多孔壁面内的局部非热平衡分析[J]. 工程热物理学报, 2007, 28(2): 286-288.
[7]JIANG Pei-xue, REN Ze-pei. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001, 22(1): 102-110.
[8]高翔宇, 孙纪国. 推力室多孔面板发汗冷却试验研究[J]. 火箭推进, 2011, 37(5): 9-12.
[9]ACHENBACH E. Heat and flow characteristics of packed beds[J]. Experimental Thermal and Fluid Science, 1995, 10(1):17-27.
[10]DIXON A G, GRESSWELL D L. Theoretical prediction of effective heat transfer parameters in packed beds[J]. AICHE J., 1979, 25(4): 663-676.
[11]VAFAI K, AMIRI A. Non-Darcian effects in confined forced convective flows[J]. Numerical Heat Transfer Journal Part A, 1997, 31: 235-254.
[12]孙纪国, 王建华. 烧结多孔结构的渗透和流阻特性研究[J]. 航空动力学报, 2008, 23(1): 130-133.
[13]DUKHAN N, PATEL P. Equivalent particle diameter and length scale for pressure drop in porous metals[J]. Expe- rimental Thermal and Fluid Science, 2008, 32(5): 1059-1067.
[14]MCCARTY R. Hydrogen technology survey thermo physi- cal properties, NASA SP-3089[R]. USA: NASA, 1975.

Memo

Memo:
-
Last Update: 1900-01-01