|Table of Contents|

Simulation analysis on wake flow temperature field of rocket engine in horizontal ground test(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2012年06期
Page:
29-34
Research Field:
研究与设计
Publishing date:

Info

Title:
Simulation analysis on wake flow temperature field of rocket engine in horizontal ground test
Author(s):
LI Mao CHEN Shi-zhe CHEN Chun-fu
Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
Keywords:
liquid rocket engine horizontal ground test combustion reaction mod
PACS:
V434-34
DOI:
-
Abstract:
Aiming at the influence of wake flow gas of the oxyhydrogen rocket engine on the ground protective devices in the horizontal ground test, the numerical simulation of engine wake flow field was conducted with 2-dimenstional axis symmetrical model and 3-dimensional model. In the calculation, the single step H-O combustion reaction model was used for the reactions between the wake flow gas and air, and the standard k-ε turbulence model was selected. The simulation results show that when the 3-dimensional model was adopted, the fired gas flows to the ground where the gas temperature was higher than that of 2-dimenstional axis symmetrical model; as the working condition of the engine was changed, the variable trend of the gas temperature on the ground as for the 2-dimensional axis symmetrical model was opposite to that as for 3-dimension model. Therefore, the reliability of 3-dimentional is higher than 2-dimensional axis symmetrical model.

References:

[1]郭霄峰. 液体火箭发动机试验[M]. 北京: 中国宇航出版社, 1990.
[2]SHANG H M, CHEN Y S, LIAW P. Investigation of che-mical kinetics integration algorithms for reacting flows, AIAA 1995-0806 [R]. USA: AIAA, 1995.
[3]LIN Z Y, ZHOU J, HUANG Y H, et al. An innovative conception for computational combustion: multi reaction mechanisms for LRE combustion simulation, AIAA 2005-3591[R]. USA: AIAA, 2005.
[4]NEGISHI H, KUMAKAWA A, YAMANISHI N, et al. Heat transfer simulations in liquid rocket engine subscale thrust chambers, AIAA 2008-5241[R]. USA: AIAA, 2008.
[5]SOZER E., VAIDYANATHAN A, SEGAL C, et al. Compu- tational assessment of gaseous reacting flows in single element injector, AIAA 2009-449 [R]. USA: AIAA, 2009.
[6]庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M]. 长沙: 国防科技大学出版社, 1995.
[7]LIN J, WEST J S, WILLIAMS R W, et al. CFD code vali- dation of wall heat fluxs for a GO2/GH2 single element combustor, AIAA 2005-4524[R]. USA: AIAA, 2005.
[8]SOZER E, HASSAN E A, YUN S, et al. Turbulence che- mistry interaction and heat transfer modeling of H2/O2 gaseous injector flows, AIAA 2010-1525[R]. USA: AIAA, 2010.
[9] 刘昊, 宋文艳. 双模态燃烧室激波链/附面层相互干扰研究[J]. 计算机仿真, 2012 (1): 21-24.
[10] 赖松柏, 陈同祥, 于登云. 整体壁板结构弹塑性弯曲中性层位置分析[J]. 宇航材料工艺, 2012(1): 35-37.
[11] 徐方涛, 张绪虎, 贾中华. 姿/轨控液体火箭发动机推力室高温抗氧化涂层[J]. 宇航材料工艺, 2012(1): 25-29.
[12] 祝银海, 姜培学, 孙纪国, 熊宴斌. 液体火箭推力室面板发汗冷却与燃烧耦合数值模拟[J]. 工程热物理学报, 2012(1): 101-104.
[13] 党锋刚, 马红宇, 李春红, 宋春. 液氧煤油发动机稳态故障仿真分析[J]. 火箭推进, 2012(2): 27-31.
[14] 国爱燕, 唐义, 白廷柱, 黄刚. 液体火箭发动机羽烟三维紫外辐射仿真研究[J]. 北京理工大学学报, 2012(4): 410-414.
[15] 董士奎, 刘洪芝, 马宇, 谈和平. 气粒混合物非灰辐射特性合并宽窄谱带K分布模型[J]. 工程热物理学报, 2012(1): 94-96.
[16] 孙志强, 杨青真, 陈立海, 刘毅. 涡扇发动机引射喷管的红外辐射特性数值研究[J]. 航空工程进展, 2012(1): 92-97.
[17] 张少丽, 单勇, 张勇, 张靖周. 膨胀边开槽对单边膨胀喷管性能影响的数值研究[J]. 推进技术, 2012(3): 436-442.

Memo

Memo:
-
Last Update: 1900-01-01