|Table of Contents|

Effect of bearing position on dynamic stability of turbopump rotor system in liquid rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2013年03期
Page:
58-66
Research Field:
研究与设计
Publishing date:

Info

Title:
Effect of bearing position on dynamic stability of turbopump rotor system in liquid rocket engine
Author(s):
DOU Wei CHU Bao-xin
Beijing Aerospace Propulsion Institute, Beijing 100076, China
Keywords:
liquid rocket engine turbo-pump rotor system bearing position system dynamic stability
PACS:
V434+.21
DOI:
-
Abstract:
The dynamic stability research about bearing axial position is carried out for the turbine pump nonlinear rotor system of low temperature liquid rocket engine. The dynamics model of nonlinear rotor system is established. The effect of axial position change of both the bearing near the pump and the bearing near the turbine on the stability of the rotor system is respectively researched under conditions of ideal installation and nonideal installation with eccentricity. The variation of instability rotate speed with bearing axial position is given. In this paper, a theoretical foundation is provided for structure design, fault diagnosis, installation and maintenance of the turbine pump rotor system in liquid rocket engine.

References:

[1]WYSSMANN H, JENNY R, PHAM T. Prediction of stiffness and damping coefficients for centrifugal com- pressor labyrinth seals[J]. ASME Journal of Engineering for Gas Turbines and Power, 1984, 106(4): 920-926.
[2]NOSAKA M. Self-lubricating performance and durability of ball bearings for the LE-7 liquid oxygen rocket-turbopump[J]. Lubrication Engineering, 1993, 49(9): 677-688.
[3]TIWARI M, GUPTA K, PRAKASH O. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor[J]. Journal of Sound and Vibra- tion, 2000, 238: 723-756.
[4]CHIRLDS D W. The space shuttle main engine high pressure fuel turbopump rotordynamic instability problem [J]. Journal of Eng. Gas Turbines Power, 1978, 100(1): 48-57
[5]ARGHIR M, FRENE J. Rotordynamic coefficients of circumferentially grooved liquid seals using the averaged Navier-Stokes equations[J]. ASME Journal of Tribology, 1997, 119: 556-567.
[6]MUSZYNSKA A, BENTLY D E. Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor/bearing/seal systems and fluid handling machines[J]. Journal of Sound and Vibra- tion, 1990, 143(1): 103-124.
[7]BROMMUNDT E, OSTERMEYER G P. Stability of a rotor partially filled with liquid and attached to an aniso- tropically mounted shaft[J]. Ingenieur - Archiv, 1986, 56(3): 379-388.
[8]HOLM-CHRISTENSEN O, TRAGER K. A note of insta- bility caused by liquid motions[J]. Journal of Applied Mech., 1991, 58(4): 801-811.
[9]ZHANG W. Dynamic stability of a rotor filled or partially filled with liquid[J]. Journal of Applied Mech., 1996, 64(1): 101-105.
[10]沈紫乐, 李凌均, 雷新望. 转子系统中轴承位置对联轴器不对中量影响的研究[J]. 矿山机械,2011, 39(9): 113-116.
[11]牛忠俊, 花春. 轴系横向振动边界参数的确定及轴承位置优化[J]. 2011泰州职业技术学院学报, 2011, 11(3): 110-114.
[12]白长青, 许庆余, 张小龙. 滚动轴承-火箭发动机液氢涡轮泵转子系统的动力特性分析[J]. 航空学报, 2006, 27(2): 258-261.
[13]应桂炉. 氢涡轮泵试验振动分析[J]. 导弹与航天运载技术, 1995 (5): 40- 46.
[14]祝长生. 支承刚度各向异性部分充液转子系统的稳定性[J]. 航空动力学报, 2000, 15(4): 431-434.
[15]张大义, 母国新, 洪杰. 航空发动机转子支承系统刚度计算中的几个问题[J]. 战术导弹技术, 2005 (2): 20-23.
[16]窦唯, 刘占生. 液体火箭发动机涡轮泵转子弯扭耦合振动研究[J]. 火箭推进, 2012, 38(4): 17-25.
[17]黄智勇, 胡钟兵, 李惠敏. 大功率、高转速、高扬程涡轮泵振动分析与减振研究[J]. 火箭推进, 2005, 31(6): 1-6.

Memo

Memo:
-
Last Update: 1900-01-01