|Table of Contents|

Solution of transient flow in propellant pipelines by Chebyshev spectral collocation method(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2013年04期
Page:
24-29
Research Field:
研究与设计
Publishing date:

Info

Title:
Solution of transient flow in propellant pipelines by Chebyshev spectral collocation method
Author(s):
CHEN Hong-yu LIU Hong-jun LIU Shang
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
liquid propellant rocket engine propellant transfer Chebyshev spectral collocation method numerical simulation
PACS:
V421.42
DOI:
-
Abstract:
A new fast and efficient algorithm, Chebyshev spectral collocation method (CSCM), is introduced to solve the hyperbolic partial differential equations governing the transient flow in the propellant pipelines. The numerical oscillation caused by solving the discontinuous or big gradient change was effectively eliminated by adding the super spectral viscosity term into transient flow control equations. Taking a uniform cross section pipe connecting the tank and valve as an example, the water hammer phenomenon, which appears when the pipe is closed, is calculated with the method. The simulation result under the corresponding water hammer pressure is offered and compared with the results obtained respectively from the characteristics method and finite element method. The feasibility of solving the transient flow in the propellant pipelines by CSCM is demonstrated.

References:

[1]RUTH E K, AIM H, BAKER R L, et al. Advanced liquid rocket engine transient model, AIAA 90-2299[R]. USA: AIAA, 1990.
[2]HAGEN D, GERD K. Numerical simulation of transients in feed systems for cryogenic rocket engines, AIAA 95-2967[R]. USA: AIAA, 1995.
[3]WYLIE E B, STREETER V L. Fluid transient in systems [M]. Endlewood Cliffs, USA: Prentice Hall, 1993.
[4]王克昌. 液体火箭发动机瞬变过程的计算机模拟[J]. 宇航学报, 1981, 2(1): 3l-41.
[5]林西强, 程谋森, 刘昆, 等. 液路耦联多发动机系统开关机动态特性研究[J]. 推进技术, 1999, 20(4): 22-25.
[6]张黎辉, 李家文, 张雪梅, 等. 航天器推进系统发动机动态特性研究[J]. 航空动力学报, 2004, 19(4): 546-549.
[7]张育林, 刘昆, 程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社, 2005.
[8]KOLCIO K, HELMICKI A J, JAWEED S. Propusion system modeling for condition monitoring and control: partⅠ' theoretical foundation, AIAA 94-3227[R]. USA: AIAA, 1994.
[9]KOLCIO K, HELMICKI A J, JAWEED S. Propusion system modeling for condition monitoring and control: partⅡ' application to the SSME, AIAA 94-3228[R]. USA: AIAA, 1994.
[10]程谋森, 刘昆, 张育林. 推进剂供应管路内液体瞬变流一维有限元计算[J]. 推进技术, 2000, 21(4): 12-15.
[11]ONORATI A, PEROTTI M, and REBAY S. Modeling one-dimensional unsteady flows in ducts: symmetric finite difference schemes versus galerkin discontinuous finite element method[J]. International Journal of Mechani- cal Science, 1997, 39(11): 1213-1236.
[12]SZYMKIEWICZ R, MITOSEK M. Analysis of unsteady pipe flow using the modified finite element mMethod[J]. Communications in Numerical Methods in Engineering, 2005 (25): 183-199.
[13]MAJUMDAR A. Numerical modeling of fluid transient by a finite volume procedure for rocket propulsion systems [C]// Proceedings of ASME FEDSM'03, 4th ASME/JSME Joint Fluids Engineering Conference. Honolulu, Hawaii, USA: [s.n.], 2003.
[14]YAMANISHI N, KIMURA T, TAKAHASHI M, et al. Transient analysis of the LE-7A rocket engine using the rocket engine dynamic simulator (REDS), AIAA 2004-3850 [R]. USA: AIAA, 2004.
[15]刘昆, 张育林. 一维可压缩流的有限元状态空间模型[J]. 推进技术, 1999 (5):62-66.
[16]CANUTO C, QUARTERONI A. Approximation results for orthogonal polynomials in Sobolev spaces[J]. Math Compu, 1982, 38: 67-86.
[17]GUO B Y. Spectral methods and absorbing boundary conditions for Maxwell's Equations[D]. Singapore: World Scientific, 1998.
[18]HUANG W Z, SLOAN D M. The pseudo-spectral method for solving differential eigenvalue equations[J]. J. Comp Phys, 1994, 111: 399-409.
[19]MA H P, Chebyschev-Legendre super spectral viscosity method for nonlinear conservation laws[J]. SIAM J. Numerical Anal, 1998, 35 (3): 893-908.
[20]MA H P, LI H Y. Super spectral viscosity method for nonlinear conservation laws[J]. Journal of Shanghai Uni-versity (English Edition), 2006, 10(1): 9-l4.
[21]SCOTT A S. Chebyshev super spectral viscosity method for a two-dimensional fluidized bed model[J]. Int. J. Numer. Meth. Fluids, 2002 (4): 1-18.
[22] 陈宏玉, 刘红军, 刘上. 水击问题的Fourier谱方法计算[J]. 火箭推进, 2012, 38(3): 7-11.
[23]刘昆, 张育林. 推进剂供应管道的集中参数近似模型研究-模态近似模型[J]. 推进技术, 1998, 19(4): 41-45.
[24]徐峰, 刘英元, 陈海峰. 火箭发动机水击压力数值模拟分析[J]. 火箭推进, 2012, 38(1): 72-75.
[25] 张峥岳, 康乃全. 轨姿控液体火箭发动机水击仿真模拟[J]. 火箭推进, 2012, 38(3): 12-16.

Memo

Memo:
-
Last Update: 1900-01-01