[1]OSWATITSCH K. Pressure recovery for missiles with reaction propulsion at high supersonic speeds (the efficiency of shock diffusers), NACA TM-1140[R]. USA: NACA, 1947.
[2]EMAMI S, TREXLER C A, AUSLENDER A H, et al. Experimental investigation of inlet-combustor isolators for a dual-mode scramjet at a Mach number of 4, NASA TP-3502[R]. USA: NASA, 1995.
[3]张晓嘉, 梁德旺. 典型几何和流动参数对高超声速进气道性能的影响[J]. 南京航空航天大学学报, 2007, 39(6):765-770.
[4]张晓嘉, 梁德旺. 内压缩通道几何参数对高超声速进气道性能的影响[J]. 南京航空航天大学学报, 2005, 37(6):685-689.
[5]金志光, 张元. 宽马赫数范围高超声速进气道伸缩唇口式简单变几何方案研究[J].宇航学报, 2010, 31(5):1503- 1510.
[6]MROZINSKI D P, HAYES J R. Numerical and ex- perimental analysis of a hypersonic variable geometry inlet, AIAA-1999-899[R]. USA: AIAA, 1999.
[7]李航, 李博. 二元高超声速进气道的内压段设计[J]. 航空动力学报, 2013, 28(6): 96-102.
[8]袁化成, 滕健, 郭荣伟. 内收缩比可控的二元高超声速变几何进气道研究[J]. 航空动力学报, 2012, 27(11): 73-79.
[9]HENDERSON L K. Maximum total pressure recovery across a system of shock waves[J]. AIAA Journal, 1964, 2(6): 1138-1140.
[10]HEISER W H, PRATT D T, DELEY D H, et al. Hyper- sonic airbreathing propulsion[M]. Washington, D C: Ame- rican Institute of Aeronautics and Astronautics Inc,1994.
[11]SMART M K. Optimization of two-dimensional scramjet inlets[J]. Journal of Aircraft, 1999, 36(2): 430-433.
[12]SMART M K, TREXLER C A. Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to- elliptical shape transition, AIAA 2003-0012[R]. USA: AIAA, 2003.