|Table of Contents|

Investigation of thermal protection for attitude control propulsion device(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年05期
Page:
37-43
Research Field:
研究与设计
Publishing date:

Info

Title:
Investigation of thermal protection for attitude control propulsion device
Author(s):
LIU Hai-wa
Shanghai Institute of Space Propulsion, Shanghai 201112, China
Keywords:
thermal protection function experiment simulation calculation
PACS:
V434-34
DOI:
-
Abstract:
As one of the ablative materials, the phenolic resin is used in some thermal protection systems of space vehicles due to its great thermostability. However, its thermal protection function must be checked in actual engineering. In this paper, taking the liquid pipe with 80-fibre cloth/phenolic resin coating as research object, and the heat flux as thermal boundary condition, simulation calculation and heat flux experiment were adopted to research the temperature field of the empty pipe and the pipe injected with water. The simulation result indicates that the temperature distribution on the pipe surface is balanced and there is transient temperature change at a certain point on the pipe surface under the condition of water filled and empety pipe. To verify the result of simulation, a heat flux experiment was carried out, and the transient temperature change on pipe surface and the detecting point in water is obtained by experiment. The results of heat flux experiment and the simulation calculation was compared. The research results indicate that the 80-fibre cloth/phenolic resin's thermal protection performance can meet the temperature requirement of the attitude control propulsion device. The simulation and experiment results have perfect consistency. The rationality and validity of simulation calculation are demonstrated.

References:

[1]张衍, 刘育建, 王井岗. 我国高性能烧蚀防热材料用酚醛树脂研究进展[J]. 宇航材料工艺, 2005 (2): 1-5.
[2]李志永, 郑日恒, 李立翰, 等. 冲压发动机高硅氧/酚醛燃烧室热防护层实验研究[J]. 推进技术, 2013, 34(1): 76-80.
[3]张涛, 孙冰. 航天器再入全过程轴对称烧蚀热防护数值仿真研究[J]. 宇航学报, 2011, 32(5): 1195-1204.
[4]闫联生, 姚冬梅, 杨学军. 新型耐烧蚀材料研究. 宇航材料工艺[J]. 2002 (2): 29-31.
[5]冯志海, 余瑞莲, 姚承照, 等. 四种防热材料的烧蚀侵蚀试验研究[J].宇航材料工艺, 2001 (6): 10-13.
[6]李岩芳, 陈林泉, 严利民, 等. 固体火箭冲压发动机补燃室绝热层烧蚀试验研究[J]. 固体火箭技术, 2003, 26(4): 68-74.
[7]杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2002.
[8]侯增祺, 胡金刚. 航天器热控制技术-原理及其应用[M]. 北京: 中国科学技术出版社, 2007.
[9]章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 北京: 中国建筑工业出版社, 1998.
[10]孙冰, 刘小勇, 林小树, 等. 固体火箭冲压发动机燃烧室热防护层烧蚀计算[J]. 推进技术, 2002, 23(5): 375- 378.
[11]杨德军, 李旭东. C/C复合材料的热化学烧蚀和温度场耦合分析[J]. 复合材料学报, 2013, 30(2): 213-219.
[12]尹春贺, 谢勇, 由佳欣, 等. 基于热-电耦合有限元法的隔离开关热稳定性分析[J]. 机电元件, 2013, 33(2): 47-51.

Memo

Memo:
-
Last Update: 1900-01-01