|Table of Contents|

Establishment and confirmation of mathematical computational model of thickness of CVD-PyC interface and SiC coatings(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年05期
Page:
69-74
Research Field:
工艺与材料
Publishing date:

Info

Title:
Establishment and confirmation of mathematical computational model of thickness of CVD-PyC interface and SiC coatings
Author(s):
YANG Xiao-hui WANG Yi BAI Long-teng
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
C/SiC compositechemical vapor deposition carbon interfacechemical vapor deposition SiC coatingmathematical model
PACS:
V258+.-34
DOI:
-
Abstract:
The appropriate mathematical computational models for thickness of the chemical vapor deposition carbon interface and the chemical vapor deposition SiC coating were established. Combined with the experimental result analysis, it is found that the thickness values of the chemical vapor deposition carbon interface and SiC coating calculated by the models are closed to the results got from the common SEM picture analysis. As the result, the thickness values of the chemical vapor deposition carbon interface and SiC coating of the C/SiC composite products can be estimated through the established model, thereby it can be used to judge quickly whether the chemical vapor deposition quality of the C/SiC composite products satisfies the requirements of the actual working condition.

References:

[1]XU Y, ZHANG L, CHENG L, et al. Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration[J]. Carbon, 1998, 36(7/8): 1051-1056.
[2]KITAOKA S, KAWASHIMA N, SUZUKI T, et al. Fabrication of continuous-SiC-fiber-reinforced SiAlON-based ceramic composites by reactive melt infiltration[J]. Journal of the American Ceramic Society, 2001, 84(9): 1945- 1951.
[3]TAKEDA M, URANO A, SAKAMOTO J, et al. Micros- tructure and oxidation behavior of silicon carbide fibers derived from polycarbosilane[J]. Journal of the American Ceramic Society, 2000, 83(5): 1171-1176.
[4]王玲玲, 张玲. CVD-SiC 涂层的C/C-SiC 复合材料的抗烧蚀性能[J]. 宇航材料工艺, 2013, 2: 78-82.
[5]DONG S M, KATOH Y, KOHYAMA A, et al. Micro- structural evolution and mechanical performances of SiC/SiC composites by polymer impregnation/microwave pyrolysis (PIMP) process[J]. Ceramics International, 2002, 28(8): 899- 905.
[6]DROILLARD C, LAMON J. Fracture toughness of 2-D woven SiC/SiC CVI composites with multilayered interphases[J]. J Am Ceram Soc, 1996, 79(4): 849-858.
[7]纪锐, 魏永良, 刘文川. 热解碳界面层对碳/碳化硅复合材料拉伸性能的影响[J]. 炭素技术, 1995(2): 6-10.
[8]闫志巧, 熊翔, 肖鹏, 等. C/SiC 复合材料表面化学气相沉积涂覆 SiC 涂层及其抗氧化性能[J]. 硅酸盐学报, 2008, 36(8): 1098-1102.
[9]吴守军, 成来飞, 张立同, 等. CVD SiC 涂层对3D C/SiC 复合材料氧化行为的影响[J]. 无机材料学报, 2005, 20(1): 251-256.
[10]闫志巧, 熊翔, 肖鹏, 等. CVD SiC 涂层的C/SiC 复合材料的弯曲性能[J]. 中南大学学报, 2008, 39(6): 1207-1212.
[11]尹洪峰, 徐永东, 成来飞, 等. 界面相对碳纤维增韧碳化硅复合材料性能的影响[J]. 硅酸盐学报, 2000, 28(1): 1-5.
[12]张青, 成来飞, 张立同, 等. 界面相对3D C/ SiC 复合材料热膨胀性能的影响[J]. 航空学报, 2004, 25(5): 508- 512.
[13]周清, 董绍明, 丁玉生, 等. 界面涂层对气相渗硅Cf/SiC复合材料力学性能的影响[J]. 无机材料学报,2007, 22(6): 1142-1146.

Memo

Memo:
-
Last Update: 1900-01-01