|Table of Contents|

Research on temperature field and heat deformation of mechanical seal in liquid rocket engine turbopump(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年05期
Page:
92-96
Research Field:
测控与试验
Publishing date:

Info

Title:
Research on temperature field and heat deformation of mechanical seal in liquid rocket engine turbopump
Author(s):
ZHANG Shu-qiang WANG Liang ZHAO Wei-gang
Xi’an Aerospace Propulsion Institute, Xi’an 710100, China
Keywords:
mechanical seal heat-transfer model temperature field heat deformation
PACS:
V434-34
DOI:
-
Abstract:
A two-dimensional steady-state heat-transfer model of mechanical seal in the liquid rocket engine turbopump was established based on ANSYS. The heat transfer coefficients of the model were determined according to the empirical formula. Based on the model, the temperature field and heat deformation of the sealing ring were calculated. The influences of specific pressure in seal face, cooling flow and different materials on the seal temperature distribution are analyzed. Simulation results show that the maximum temperature of the seal face appears near the inner of the seal ring and the temperature gradient increases with the increase in specific pressure; the heat deformation of the seal ring leads to a converged gap, and the maximum heat deformation occurs at the outer diameter of rotating seal ring, which is 2.2 μm; the maximum temperature decreases with an increase of the cooling flow, and the maximum temperature in the seal face decreases by 18% (from 100 ℃ to 82 ℃) when the cooling flow changes from zero to 0.6 kg/s; the maximum temperature reaches to a stable value, while the cooling flow increases to 0.3 kg/s. The sealing materials with high heat transfer coefficient can reduce the temperature rise and temperature gradient of the seal face dramatically, and improve the reliability of the seal.

References:

[1]张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[2]杜天恩. 轴承、端面密封在液氧中的运转试验[J]. 火箭推进, 2001, 27(3): 10-13.
[3]白东安, 段增斌, 张翠儒. 涡轮泵端面密封性能与漏气量影响研究[J]. 火箭推进, 2010, 36(1): 38-42.
[4]王涛, 黄伟峰, 王玉明. 机械密封液膜汽化问题研究现状与进展[J]. 化工学报, 2012, 63(11): 3375-3382.
[5]彭旭东, 顾永泉. 不同相态机械密封的性能计算[J]. 流体机械, 1994, 22(8): 20-24.
[6]郝木明, 李香, 李鲲, 等. 端面弧形浅槽机械密封温度场及变形研究[J]. 流体机械, 2010, 38(4): 23-27.
[7]顾永泉. 机械密封实用技术[M]. 北京: 机械工业出版社, 2007.
[8]张树强, 李双喜, 蔡纪宁, 等. 动静压混合式气体密封追随性及主动调控振动特性数值分析[J]. 航空学报, 2012, 33(7): 1336-1345.
[9]王胜军, 张书贵. 液膜润滑非接触式机械密封温度场分析[J]. 润滑与密封, 2009, 34(1): 73-76.
[10]王志豪, 索双富, 黄伟峰, 等. 机械密封对流传热系数数值研究[J]. 润滑与密封, 2011, 36(6): 29-33.
[11]刘伟, 彭旭东, 白少先, 等. 流体静压型机械密封的三维传热数学模型及端面温度分析[J]. 摩擦学报, 2010, 30(1): 57-63.
[12]顾伯勤, 周剑锋, 陈晔, 等. 机械密封端面间液膜摩擦热的传热规律[J]. 中国科学E辑: 技术科学, 2008, 38(1): 137-147.
[13]王胜军, 郝木明, 张书贵. 机械密封温度场计算[J]. 化工机械, 2004, 31(4): 203-207.
[14]彭旭东, 谢友柏, 顾永泉. 机械密封端面温度的确定[J]. 化工机械, 1996, 23(6): 333-366.
[15]周剑锋, 顾伯勤. 机械密封环的传热特性分析[J]. 机械工程学报, 2006, 42(9): 201-206.

Memo

Memo:
-
Last Update: 1900-01-01