|Table of Contents|

Study of inducers for low-NPSHr high-speed pumps(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2014年06期
Page:
16-20
Research Field:
研究与设计
Publishing date:

Info

Title:
Study of inducers for low-NPSHr high-speed pumps
Author(s):
HOU Jie YU Hai-li YANG Min
Beijing Aerospace Propulsion Institute, Beijing 100076, China
Keywords:
inducer cavitation performance high-speed pump fluid inlet angle of attack head coefficient
PACS:
V434.21-34
DOI:
-
Abstract:
The inducer is an important part to improve cavitation performance of high-speed pump. In order to research the effect of the design parameters of the inducer on cavitation performance of high-speed pumps, three design schemes of inducer for a horizontal high-speed pump were made respectively, and then a corresponding cavitation experiment was performed in laboratory for the horizontal high-speed pump with each designed inducer. The experimental results shows that cavitation performance of the high-speed pump can be remarkably improved if the parameters of the inducer are reasonably designed. In order to research the liquid flow state in the inducer, the method of RANS was adopted to simulate internal flow field in the inducer numerically to determine the relative velocity distribution and pressure distribution on the working face of inducer. Results of experimental research and numerical calculations prove that the head coefficient of this kind of inducer should be less than 0.15 and fluid inlet angle of attack should be reasonably adjusted. The high-speed pump with equal pitch inducer and rational design can obtain excellent cavitation performance.

References:

[1]张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[2]贺寅彪, 曲家棣, 窦一康. 反应堆压力容器金属“O”形环密封性能研究[J]. 压力容器, 2004, 21(9): 9-12.
[3]蔡力勋, 叶裕明, 左国. Inconel 718合金O形环的高温压扁弹塑性行为[J]. 上海交通大学学报, 2005, 39(5):818-822.
[4]余伟炜, 蔡力勋, 叶裕明, 等. Inconel 718合金O形环回弹特性研究[J]. 工程力学, 2006, 23(6): 142-147.
[5]陈洪军, 蔡力勋. 304不锈钢O形环回弹量的预测模型研究[J]. 机械强度, 2009, 31(3): 443-447.
[6]周鑫, 庞贺伟, 闫少光. 球头-锥面连接结构非线性接触分析[J]. 航天器环境工程, 2005, 22(4): 211-214.
[7]周鑫, 庞贺伟, 刘宏阳. 球面密封结构密封状态的力学分析及验证[J]. 中国空间科学技术, 2007, 27(2): 42-46.
[8]周鑫, 庞贺伟, 刘宏阳. 球面密封结构的泄漏率预估[J]. 宇航学报, 2007, 28(3): 762-766.
[9]王建武, 刘军生, 陈少斌. 球面型管路连接件密封性能分析及力学性能测试[J]. 火箭推进, 2010, 36(6): 36-41.
[10]赵剑, 谭永华, 陈建华, 等. 自紧式K形金属密封组件密封特性研究[J]. 火箭推进, 2013, 39(6): 35-41.
[11]苟文选. 材料力学(I)[M]. 北京: 科学出版社, 2005.
[12]俞汉清, 陈金德. 金属塑性成形原理[M]. 北京: 机械工业出版社, 1999.
[13]黄其殷, 白旭东, 李妙婷. 软金属密封结构密封性能数值仿真研究[J]. 火箭推进, 2012, 38(3): 27-33.
[14]庄茁, 由小川, 廖剑晖, 等. 基于ABAQUS的有限元分析和应用[M]. 北京: 清华大学出版社, 2009.
[15] 石亦平, 周玉蓉. ABAQUS有限元分析实例详解 [M]. 北京: 机械工业出版社, 2006.
[16] 曹金凤, 石亦平. ABAQUS有限元分析常见问题解答[M]. 北京: 机械工业出版社, 2009.
[17] 周先军. 高温大口径法兰瞬态密封设计方法研究[D]. 北京: 中国石油大学, 2008.

Memo

Memo:
-
Last Update: 1900-01-01