|Table of Contents|

Clustering analysis for fault data in steady process of liquid propellant rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年02期
Page:
118-122
Research Field:
测控与试验
Publishing date:

Info

Title:
Clustering analysis for fault data in steady process of liquid propellant rocket engine
Author(s):
ZHANG Xiang XU Hong-ping AN Xue-yan GENG Hui ZHANG Su-ming
Beijing Institute of Space System Engineering, Beijing 100076, China
Keywords:
liquid propellant rocket engineIMScluster analysis
PACS:
V434-34
DOI:
-
Abstract:
As a branch of statistics, clustering analysis has been widely studied for many years, and formed a system of the systematic method. The data mining based on clustering analysis method has achieved a good effect in practice. IMS algorithm presented by NASA according to the development of the intelligent monitoring system and fault diagnosis technology is a real-time monitoring algorithm to use normal database to monitor the abnormal data, which has been used by NASA in many aspects and gained a satisfactory effect. The included angle cosine IMS clustering analysis method based on steady process fault data of LRE is proposed in this article on the basis of analysis of the IMS algorithm of SSME. It was verified by simulation analysis.

References:

[1]冯辅周, 司爱威. 故障预测与健康管理技术的应用与发展[J]. 装甲兵工程学院学报, 2009, 23(06): 1-6.
[2]张育林, 吴建军. 液体火箭发动机健康监控技术[M]. 长沙:国防科技大学出版社, 1998.
[3]代京, 张平, 李行善. 综合运载器健康管理健康评估技术研究[J]. 宇航学报, 2009, 30(4): 1711-1721.
[4]张振鹏. 液体火箭发动机故障检测与诊断中的基础研究问题[J]. 推进技术, 2002, 23(5): 353-359.

[5]夏鲁瑞. 液体火箭发动机涡轮泵健康监控关键技术及系统研究[D]. 长沙: 国防科学技术大学, 2010.

[6]杨小兵. 聚类分析中若干关键技术的研究[D]. 杭州: 浙江大学, 2005.
[7]章兢, 张小刚. 数据挖掘算法及其工程应用[M]. 北京: 机械工业出版社, 2006.
[8]刘红岩, 陈剑. 数据挖掘中的数据分类算法综述[J]. 清华大学学报: 自然科学版, 2002, 42(6): 727-730.
[9]MARTIN RA, SCHWABACHER MA, MATTHEWS BL. Data-driven anomaly detection performance for the Ares I-X ground diagnostic prototype[R]. USA: NASA, 2010.
[10]DAVID L I. Inductive monitoring system constructed from nominal system data and its use in real-time system monitoring, AIAA 2004-8062[R]. USA: AIAA, 2004.
[11]王莉. 数据挖掘中聚类方法的研究[D]. 天津: 天津大学, 2003.
[12]IVERSON D L, MARTIN Rodney, SCHWABACHER Mark, et al. General purpose data-driven system monitoring for space operations[J]. Journal of Aerospace Com- puting, Information, and Communication, 2012, 9(2): 26-44.
[13]袁志发, 宋世德. 多元统计分析[M]. 北京: 科学出版社, 2009.
[14]杨沛武. PCA多元统计方法在过程监控中的应用研究[D]. 苏州: 江南大学, 2008.

Memo

Memo:
-
Last Update: 1900-01-01