|Table of Contents|

Application and development trend of space electric propulsion technology(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年03期
Page:
7-14
Research Field:
专论与综述
Publishing date:

Info

Title:
Application and development trend of space electric propulsion technology
Author(s):
TIAN Li-cheng WANG Xiao-yong ZHANG Tian-ping
Key Laboratory of Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730000, China
Keywords:
space electric propulsion application demand technology development trend
PACS:
V439-34
DOI:
-
Abstract:
The space electric propulsion technology and its typical application at abroad are analyzed in this paper. The applications of the electric propulsion technology in the fields of GEO satellite position keeping and orbit transfer, propulsion of deep space exploration, low-medium orbit spacecraft drag-free control and high precision attitude control, and track maintain of space solar power station are introduced in detail. The application demands of electric propulsion technology in different fields in China are analyzed, including GEO satellite position keeping and full electric propulsion, main propulsion of near-earth asteroid exploration, low-orbit spacecraft drag-free control and orbit maintain, ultra-low orbit small satellite formation flying and micro/small satellite precise orbit control, space requirements of the electric propulsion in the different fields and development direction of the electric propulsion technology, the research projects of electric propulsion technology in China in the next 20 years are put forward.

References:

[1]张郁. 电推进技术的研究应用现状及其发展趋势[J]. 火箭推进, 2005, 31(2): 27-36. ZHANG Yu. Current status and trend of electric propulsion technology development and application[J]. Journal of Rocket Propulsion, 2005, 31(2): 27-36.
[2]KOZUBSKI K N, MURASHKO V M, RYLOV Y P, et al. Stationary plasma thrusters operate in space[J]. Plasma Physics Reports, 2003, 29(3): 251-266.
[3]ANZEL B. Stationkeeping the Hughes HS 702 satellite with a xenon ion propulsion system[C]// Proceedings of the 49th International Astronautical Congress. Melbourne, Australia: IAF, 1998:105-110.
[4]OCAMPO C A. Geostationary orbit transfer using electric propulsion for the Hughes HS-702 satellite[C]// Procee- dings of the 49th International Astronautical Congress. Melbourne, Australia: IAF, 1998: 209-216.

[5]KING L B, GALLIMORE A D, MARRESE C M. Transport-property measurements in the plume of an SPT-100 Hall thruster[J]. Journal of Propulsion and Power, 1998, 14(3): 327-335.

[6]张天平, 张雪儿. 空间电推进技术及应用新进展[J]. 真空与低温, 2013, 19(4): 187-194.
[7]RAWLIN V K, SOVEY J S, HAMLEY J A, et al. An ion propulsion system for NASA's deep space missions, AIAA 1999-4612[R]. USA: AIAA, 1999.
[8]SENGUPTA A, ANDERSON J R, BROPHY J R, et al. Performance characteristics of the Deep Space 1 flight spare ion thruster long duration test after 21,300 hours of operation, AIAA 2002-3959[R]. USA: AIAA, 2002.
[9]SENGUPTA A, BROPHY J R, GOODFELLOW K D. Status of the extended life test of the Deep Space 1 flight spare ion engine after 30 352 hours of operation[M]. USA: NASA, 2003.
[10]BROPHY J R, MARCUCCI M G, GANAPATHI G B, et al. The ion propulsion system for Dawn, AIAA 2003- 4542 [R]. USA: AIAA, 2003.
[11]GARNER C E, RAYMAN M D, BROPHY J R. In-flight operation of the Dawn ion propulsion system through start of the Vesta cruise phase, AIAA 2009-5091[R]. USA: AIAA, 2009.
[12]KUNINAKA H, NISHIYAMA K, SHIMIZU Y, et al. Flight status of cathode-less microwave discharge ion engines onboard Hayabusa asteroid explorer, AIAA 2004-3438[R]. USA: AIAA, 2004.
[13]KUNINAKA H, SHIMIZU Y, YAMADA T, et al. Flight report during two years on HAYABUSA explorer propelled by microwave discharge ion engines, AIAA 2005-3673[R]. USA: AIAA, 2005.
[14]KUNINAKA H, NISHIYAMA K, FUNAKI I, et al. Asteroid rendezvous of HAYABUSA explorer using mic- rowave discharge ion engines, IEPC-2005-10[R]. Florence, Italy: IEPC, 2005.
[15]KUNINAKA H, NISHIYAMA K, SHIMIZU Y, et al. Re-ignition of microwave discharge ion engines on Hayabusa for homeward journey, IEPC-2007-9[R]. Florence, Italy: IEPC, 2007.
[16]DRINKWATER M R, FLOBERGHAGEN R, HAAGMANS R, et al. GOCE: ESA's first earth explorer core mission[M]// BEUTLER G B, DRINKWATER M R, RUMMEL R, et al. Earth gravity field from space-From sensors to earth sciences. Dordrecht, Netherlands: Kluwer Academic Publishers, 2003: 419-432.
[17]ZAKRZWSKI C, BENSON S, SANNEMAN P, et al. On-orbit testing of the EO-1 pulsed plasma thruster [EB/OL]. [2003-02-19]. http://ntrs.nasa.gov/archive/nasa/ casi.ntrs.nasa.gov/20030025690.pdf.
[18]DOMONKOS M T, FOSTER J E, SOULAS G C, et al. Testing and analysis of NEXT ion engine discharge ca- thode assembly wear, AIAA2003-4364[R]. USA: AIAA, 2003.
[19]BENSON S W, PATTERSON M J, SNYDER S. NEXT ion propulsion system progress towards technology readiness, AIAA2008-5282[R]. USA: AIAA, 2008.
[20]TANG R, GALLIMORE A D, KAMMASH T. Design of an ECR gas dynamic mirror thruster, IEPC-2009-210 [R]. Michigan, USA: IEPC, 2009.

Memo

Memo:
-
Last Update: 1900-01-01