[1]TORO E F. Riemann solvers and numerical methods for fluid dynamics, a practical introduction[M]. 3rd ed. London: Springer, 2009.
[2]LUO H, JOSEPH D B, RAINALD L. Extension of HLLC scheme for flows at all speeds, AIAA 2003-3840[R]. USA: AIAA, 2003.
[3]肖军, 赵远扬, 王乐. 基于HLLC格式的径向叶轮叶顶间隙流场分析[J]. 机械工程学报, 2013, 49(18): 167-176.
[4]TITAREV V A, TORO E F. Finite-volume WENO sch- emes for three-dimensional conservation laws[J]. Journal of Computational Physics, 2004(201): 238-260.
[5]JUNG S K, MYONG R S, CHO T H. Development of Eulerian droplets impingement model using HLLC Riemann solver and POD-based reduced order method, AIAA 2011-3907[R]. USA: AIAA, 2011.
[6]XU L, WU Q J, WENG P, et al. HLLC Riemann solver based on high-order reconstruction for unsteady inviscid compressible flows[C]// Proceedings of IEEE Interna tion- al Conference on Computer Science & Automation Eng- ineering. [S.l.]: IEEE, 2011: 618-622.
[7]杨永, 陈宝, PAHKE K, et al. 高阶有限体积法研究[J]. 西北工业大学学报, 2001, 19(3): 327-331.
[8]PHILLIP C, PAUL R W. The piecewise parabolic method (PPM) for gas-dynamical simulations[J]. Journal of com- putational physics, 1984, 54: 174-201.
[9]MICHAEL S, PHILLIP C. Extremum-preserving limiters for MUSCL and PPM[J]. Physics-Computational Physics 2009, 1: 1-26.
[10]SHU C W. Essentially non-oscillatory and weighted ess- entially non-oscillatory schemes for hyperbolic conser- vation laws, NASA/CR 97-206253[R]. USA: NASA, 1997.
[11]JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126: 202-228.
[12]SHI J, HU C Q, SHU C W. A Technique of treating negative weights in WENO schemes[J]. Journal of Com- putational Physics, 2002, 175: 108-127.
[13]HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computa- tional Physics, 2005, 207: 542-567.
[14]GEROLYMOS G A, SENECHAL D, VALLAT I. Very- high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228: 8481-8524.
[15]BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227: 3191-3211.
[16]MARCOS C, BRUNO C, WAI S D. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230: 1766-1792.
[17]REN Y X, LIU M E , ZHANG H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192: 365-386.
[18]QIU J, SHU C W. On the construction, comparison, and local characteristic decomposition for high order central WENO schemes[J]. Journal of Computational Physics, 2002, 183: 187-209.
[19]TITAREV V A, TORO E F. ENO and WENO schemes based on upwind and centered TVD fluxes[J]. Computers and fluids, 2005, 34: 705-720.
[20]徐丽, 杨爱明, 丁珏, 等. 用隐式方法和WENO格式计算悬停旋翼跨声速无粘流场[J]. 计算力学学报, 2010, 27(4): 607-612.
[21]KERMANI M J, PLETT E G. Modified entropy correction formula for the Roe scheme, AIAA 2001-0083[R]. USA: AIAA, 2001.
[22]MUNDAY D, GUTMARK E, LIU J H, et al. Flow structure of supersonic jets from conical C-D nozzles, AIAA 2009-4005[R]. USA: AIAA, 2009.
[23]余铭, 刘友宏. 轴对称收-扩喷管内外流场一体化数值模拟[J]. 科学技术与工程, 2011, 11(32): 7979-7984.