|Table of Contents|

Overview of modeling and simulation technology for propellant pressurization feed system of liquid rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年05期
Page:
1-6
Research Field:
专论与综述
Publishing date:

Info

Title:
Overview of modeling and simulation technology for propellant pressurization feed system of liquid rocket engine
Author(s):
GUO Jing SONG Jingjing KONG Fanchao
Beijing Institute of Aerospace Testing Technology, Beijing 100074, China
Keywords:
liquid rocket engine pressurization feed system modeling and simulation
PACS:
V434-34
DOI:
-
Abstract:
Modeling and simulation are valid methods of studying the performance of propellant pressurization feed system of liquid rocket engine, which can shorten the design time and reduce the cost. In this paper, the general development situation of modeling methods and numerical calculation technologies of propellant pressurization feed system of liquid rocket engine is summarized. The functions of major fluid simulation softwares and their usage in the simulation study of propellant pressurization feed system in aeronautics and astronautics applications are introduced in allusion to their modularity characteristics. The result can be used as a reference of characteristic simulation of large thrust rocket engine.

References:

[1]ECANS A L, FOLLEN G, NAIMAN C, et al. Numerical propulsion system simulaiton's National Cycle Program, AIAA98-3113 [R]. Reston, USA: AIAA, 1998.
[2]张育林, 刘昆, 程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社, 2005: 1-10.
[3]格列克曼. 液体火箭发动机自动调节[M]. 北京: 宇航出版社, 1995.
[4]曹泰岳. 火箭发动机动力学[M]. 长沙: 国防科学技术大学出版社, 2004: 21-57.

[5]李强, 胡忠军, 李青, 等. 低温液体推进剂增压过程计算模型[C]. 第七届制冷低温大会论文集. 中国制冷学会,昆明, 2005: 274-277.

[6]MAJUMDAR A, STEADMAN T. Numerical modeling of pressurization of a propellant tank[J]. Journal of Propulsion and Power, 2001, 17(2): 385-390.
[7]ZILLIAC G,KARABEYONLU M A. Modeling of propellant tank pressurization[C]//Proceedings of 41st AIAA/ ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson: AIAA, 2005: 111-120.
[8]PASLEY G F. Optimization of stored pressurant supply for liquid propulsion systems[J]. Journal of Spacecraft, 1970, 7(12): 1478-1480.
[9]HOLT K, MAJUMDAR A, STEADMAN T, et al. Numerical modeling and test data comparison of propulsion test article helium pressurization system, AIAA2000-3719[R]. Reston, USA: AIAA, 2000.
[10]沈涌滨. 火箭减压器及其动态特性仿真研究[D]. 长沙: 国防科技大学研究生院, 2003.
[11]尤裕荣. 气体瞬态力对减压器动态特性的影响分析[J].机床与液压, 2006(5): 86-90.
[12]张雪梅, 张黎辉, 金广明, 等. 减压器动态过程的数值仿真[J]. 航空动力学报, 2004, 19(4): 110-114.
[13]陈晓琴. 减压阀充填过程动态特性仿真[J]. 导弹与航天运载技术, 2006 (5): 48-52.
[14]RUBIN S. Longitudinal instability of liquid rockets due to propulsion feedback (POGO) [J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1188-1195.
[15]RUBIN S. Prevention of coupled structure-propulsion instability(POGO) on the space shuttle, NASA TMX- 52876[C]// Proceedings of Space Transportation System Technology Symposium, 1970, 1: 249-262.
[16]杨本廉, 刘达广, 邹向曙. 液体管路系统网络分析及频率响应计算[J]. 宇航学报, 1985 (1): 99-109.
[17]张超, 鲁雪生, 田丽亭. 火箭低温液体推进剂增压系统数学模型[J]. 低温与超导, 2005, 33(2): 35-38.
[18]王文斌. 液体火箭增压输送系统动态特性仿真与分析[D]. 长沙: 国防科技大学研究生院, 2009.
[19]屠珊, 孙弼, 毛靖儒. 汽轮机GX-1型调节阀流动特性的试验与数值研究[J]. 西安交通大学学报, 2003, 37(11): 1124-1127.
[20]YANG A S, KUO T C. Numerical simulation for the satellite hydrazine propulsion system, AIAA2001-3829 [R]. Reston, USA: AIAA, 2001.
[21]陶玉静. 液体火箭发动机响应特性研究及稳定性的非线性分析[D]. 长沙: 国防科技大学博士学位论文, 2006.
[22]程谋森, 刘昆, 张育林. 液氢液氧火箭发动机预冷与启动过程数值模拟综述[J]. 推进技术, 2002, 23(3): 177- 181.
[23]沈赤兵. 液体火箭发动机静特性与响应特性仿真研究[D]. 长沙: 国防科技大学研究生院, 1997.
[24]KANMURI A, KANADA T, WAKAMASTU Y, et al. Transient analysis of LOX/LH2 rocket engine(LE-7), AIAA89-2736[R]. Reston, USA: AIAA, 1989.
[25]程谋森, 张育林. 航天器推进系统管路充填过程动态特性(I)理论模型与仿真结果[J]. 推进技术, 2000, 21(2):25-28.
[26]聂万胜, 陈新华, 戴德海, 等. 姿控推进系统发动机关机的管路瞬变特性[J]. 推进技术, 2003, 24(1): 6-8.
[27]BADMUS O O, EVEKER K M, NETT C N. Control-oriented high frequency turbomachinery modeling, part I: theoretical foundations, AIAA92-3314[R]. Reston, USA: AIAA, 1992.
[28]KOLCIO K, HELMICKI A J, JAWEED S. Propulsion system modeling for condition monitoring and control: part 1:theoretical foundation, AIAA94-3227[R]. Reston, USA: AIAA, 1994.
[29]刘昆. 分级燃烧循环液氧液氢发动机系统分布参数模型与通用仿真研究[D]. 长沙: 国防科学技术大学研究生院, 1999.
[30] MAJUMDAR A K, STEADMAN T. Numerical modeling of pressurization of a propellant tank, AIAA99-0879 [R]. Reston, USA: AIAA, 1999.
[31] HOLT K A, MAJUMDAR A K. Numerical modeling and test data comparison of propulsion test article helium pressurization system, AIAA2000-3719[R]. Reston, USA: AIAA, 2000.
[32]刘昆, 张育林, 程谋森. 液体火箭发动机系统瞬变过程模块化建模与仿真[J]. 推进技术, 2003, 24(5): 401-405.
[33]刘红军. 补燃循环发动机静态特性与动态响应特性研究[D]. 西安: 航天工业总公司第十一研究所, 1998.
[34]魏鹏飞, 吴建军, 刘洪刚, 等. 液体火箭发动机一种通用模块化仿真方法[J]. 推进技术, 2005, 25(2): 147-150.
[35]李家文, 张黎辉, 张振鹏. 液体火箭发动机数值模拟的计算模型建立方法[J]. 推进技术, 2002, 23(5): 363-365.
[36]帅彤, 王占彬, 张占峰, 等. 闭式增压系统仿真分析[J]. 导弹与航天运载技术, 2012 (4): 5-9.
[37]马昕晖, 栾骁, 陈景鹏, 等. 液氢加注系统中过滤器漏热故障仿真与分析[J]. 低温技术, 2012, 40(7): 17-21.
[38]白晓瑞. 液体火箭推进系统动态特性仿真研究[D]. 长沙: 国防科技大学, 2008.

Memo

Memo:
-
Last Update: 1900-01-01