|Table of Contents|

Simulation research on fluid field characteristics of LH2/LOX rocket engine plume(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2015年05期
Page:
43-48
Research Field:
研究与设计
Publishing date:

Info

Title:
Simulation research on fluid field characteristics of LH2/LOX rocket engine plume
Author(s):
QIAO Ye NIE Wansheng FENG Songjiang CAI Honghua WU Gaoyang
Equipment Academy of PLA, Beijing 101416, China
Keywords:
exhaust plumeLH2/LOX rocket engineone-step chemical reactionshock wavenumerical simulation
PACS:
V434-34
DOI:
-
Abstract:
To research the burning plume exhaust flow field of LH2/LOX rocket engine, the N-S equation is adopted, in which Realizable model and the LH2/LOX one-step chemical reaction are coupled. The chemical reaction rate is controlled by Eddy-Dissipation and Arrhenius Mechanism. The integration simulation calculation of the LH2/LOX rocket engine plume during the period of launch was performed with PISO algorithm, by which the shock wave system structure of the plume jet flow in the near field is acquired and compared with the theoretical analysis results. The effectiveness and correctness of this algorithm is proved. The dynamical forming process of the burning plume pressure field is analyzed, the developing process of the hemispheric impact wave has been gain, and it is considered that the impact wave is a normal shock wave and moves in the uniform velocity. The distribution of different parameters in the plume field has been acquired, which can provide a data foundation for the study on radiation of the plume jet flow.

References:

[1]LEE Y K, RAGHUNATHAN S, BENARD E, et al. Plume interference effect on missile bodies and control, AIAA 2003-1241[R]. Reston, USA: AIAA, 2003.
[2]AVITAL G, POMPAN J, MACALES J, et al. Experimental and CFD study of rocket plume effects on missile longitudinal aerodynamic stability, AIAA 2004-5196[R]. Reston, USA: AIAA, 2004.
[3]丰松江, 聂万胜. 导弹尾焰对其飞行性能的影响研究[J]. 装备学院学报, 2006, 17(5): 39-41.
[4]李军, 曹从咏, 徐强. 固体火箭燃气射流近场形成与发展的数值模拟[J]. 推进技术, 2003, 24(5): 410-413.

[5]周松柏, 郭正, 高嵩, 等. 火箭发动机动态流场的数值模拟[J]. 推进技术, 2007, 28(2): 118-121.

[6]张光喜, 周为民, 张钢锤, 等. 固体火箭发动机尾焰流场特性研究[J]. 固体火箭技术, 2008, 31(1):18-23.
[7]周国仪, 曹义华, 胡继忠. 火箭尾喷流对带孔平板冲击流场的数值模拟[J]. 固体火箭技术, 2001, 24(2): 1-3.
[8]孙晋, 曹从咏. 火箭喷流对平板冲击的数值模拟[J]. 南京理工大学学报, 2002, 26(4): 381-384.
[9]马艳丽, 姜毅, 郝继光, 等. 固体发动机燃气射流对发射平台冲击效应研究[J]. 固体火箭技术, 2010, 33(4): 373- 395.
[10]聂万胜, 杨军辉, 何浩波, 等. 液体火箭发动机尾喷焰红外辐射特性[J]. 国防科技大学学报, 2005, 27(5): 91-94.
[11]NIE Wansheng, FENG Songjiang. Numerical simulation of liquid rocket exhaust plume radiation, AIAA 2007- 4413[R]. Reston, USA: AIAA, 2007.
[12]丁兆波, 孙继国, 路晓红. 国外典型大推力氢氧发动机推力室技术方案综述[J]. 导弹与航天运载技术, 2012(4): 28-30.
[13]陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 1988.
[14]FENG Songjiang, CHENG Yufeng, NIE Wansheng. Combustion instability analysis in a hydrogen-oxygen rocket engine, AIAA 2009-4864[R]. Reston, USA: AIAA, 2009.
[15]ISSA R I. Solution of implicitly discretized fluid flow equations by operator splitting[R]. Journal of Computational Physics, 1986(62): 40-65.
[16]FERZIEGER J L, PERIC M. Computational methods for fluid dynamics[M]. Heidelberg: Springer-Verlag, 1996.
[17]张福祥. 火箭燃气射流动力学[M]. 北京: 国防工业出版社, 1988.

Memo

Memo:
-
Last Update: 1900-01-01