|Table of Contents|

Development and application of Hall electric propulsion technology(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年01期
Page:
8-17
Research Field:
专论与综述
Publishing date:

Info

Title:
Development and application of Hall electric propulsion technology
Author(s):
KANG Xiaolu1 2 HANG Guanrong1 2ZHU Zhichun1 2
1. Shanghai Institute of Space Propulsion, Shanghai 201112, China; 2. Shanghai Engineering Research Center of Space Engine, Shanghai 201112, China
Keywords:
Hall electric propulsion technologyHall thrustermultimode adjustmenthigh power propulsion
PACS:
V439.4-34
DOI:
-
Abstract:
Hall electric propulsion has the merits of high thrust density,high thrust-to-power ratio,high specific impulse and high reliability.It brought through its key technology and completed its space experiments during 1960s and 1970s.Now Hall electric propulsion has got a lot of applications,such as station keeping,orbit transfer,orbit adjustment and main propulsion of deep space,in spacecrafls of Russia,USA and some other countries.Currently,on-orbit application of 100 W~5 kW Hall thrusters has been realized,and 100 kW Hall thruster is under development.According to the mission requirements of future manned deep-space exploration,GEO satellites,LEO satellites and super low orbit satellites and orbital maneuver vehicles,Hall electric propulsion is developed towards the directions of higher-power envelope,stronger multimode adjustment capability,higher performance,longer life and propellant diversification.In this paper,the technical features and the applicable tasks of Hall electric propulsion technology is analyzed,the development and applications of Hall electric propulsion technology at home and abroad are reviewed,and then the development trends of Hall electric propulsion is prospected.

References:

[1]KIM V P. Design features and operating procedures in advanced Morozov's stationary plasma thrusters[J]. Technical physics, 2015, 60(3): 362-375.
[2]KHODNENKO V P. Activities of VNIIEM in EPT field History, our days and prospects: IEPC-2013-65[R]. USA:IEPC, 2013.
[3]Anon. Hall ion thrusters to fly on X-37B spaceplane [EB/OL]. http://newatlas.com/us-air-force-x-37B-hall- thruster /37200.
[4]Anon. US Air Force Launches X-37B Space Plane on 4th Mystery Mission [EB/OL]. http://www.space.com/29448- x37b-space-plane-launches-fourth-mission.
[5]Anon. Russia launches spy satellite for Egypt [EB/OL]. http://www.russianspaceweb.com/egyptsat2.
[6]KOPPEL C R, MARCHANDISE F, ESTUBLIER D, et al. The SMART-1 electric propulsion subsystem in flight experience: AIAA 2004-3435[R]. USA: AIAA, 2004.
[7]ARHIPOV B A, BOBER A S, GNIZDOR R Y, et al. The results of 7000-HOUR SPT-100 life testing[C]// Proceedings of 24th International Electric Propulsion Conference. Moscow, Russia: IEPC, 1995: 31-39.
[8]CORNU N, MARCHANDISE F, DARNON F, et al. The PPS?1350-G qualification demonstration: 10500 hrs on the ground and 5000 hrs in flight: AIAA-2007-5197[R]. USA: AIAA, 2007.
[9]DE GRYS K, MATHERS A, WELANDER B, et al. Demonstration of 10,400 hours of operation on a 4.5 kW qualification model Hall thruster: AIAA 2010-6698[R]. USA: AIAA, 2010.
[10]IOANNIS G M, IRA K, RICHARD R H, et al. Magnetic shielding of a laboratory Hall thruster I theory and validation[J]. Journal of applied physics, 2014, 115(4): 043303-043303-20.
[11]CHO S, WATANABE H, KUBOTA K, et al. Parametric kinetic simulation of an IHI high specific impulse SPT-type Hall thruster: AIAA 2014-3426[R]. USA: AIAA, 2014.
[12]HUANG W, SHASTRY R, HERMAN D A, et al. Ion current density study of the NASA-300M and NASA-457Mv2 Hall thrusters: AIAA 2012-3870[R]. USA: AIAA, 2012.
[13]HALL S J, FLORENZY R E, GALLIMOREZ A D, et al. Implementation and initial validation of a 100-kW class nested-channel Hall thruster: AIAA 2014-3815[R]. USA: AIAA, 2014.
[14]MARRESE-READING C M, FRISBEE R, SENGUPTA A, et al. Very high ISP thruster with anode layer (VHITAL): an overview: AIAA 2004-5910[R]. USA: AIAA, 2004.
[15]GEORGE J W, JR, GILLAND J H, PETERSON P Y, et al. Wear testing of the HERMeS thruster: AIAA 2016-5025[R]. USA: AIAA, 2016.
[16]GORBUNOV A V, KHODNENKO V P, KHROMOV A V. Vernier propulsion system for small earth remote sensing satellite “Canopus-V”: IEPC-2011-001[R]. Germany: IEPC, 2011.
[17]DIALLO A, KELLER S, SHI Y, et al. Time-resolved ion velocity distribution in a cylindrical Hall thruster: Heterodyne-based experiment and modeling[J]. Review of scientific instruments, 2015(86): 033506.
[18]鄂鹏, 于达仁, 武志文, 等. 磁场强度对霍尔推力器放电特性影响的实验研究[J]. 物理学报, 2009, 28(4):2535-2542.
[19]杜建华, 周世安, 赵兰, 等. HEP-100MF霍尔推力器电源处理单元[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 861-864.
[20]田立成, 赵成仁, 张天平, 等. LHT-100霍尔电推进系统鉴定试验及集成测试[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 817-829.
[21]高俊, 汤章阳, 刘国西, 等. 我国卫星电推进系统研制情况及应用进展[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 128-135.
[22]钱中, 康小录, 王平阳. 霍尔推力器等离子体羽流粒子模拟[J]. 上海航天, 2009(4): 43-46.
[23]邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究[J]. 物理学报, 2011, 60(2): 025213.
[24]MAZOU S, TSIKATAY S, VAUDOLONZ J, et al. Dev- elopment and characterization of a wall-less Hall thruster: AIAA 2014-3513[R]. USA: AIAA, 2014.
[25]HERMAN D A, UNFRIED K G.. Xenon acquisition strategies for high-power electric propulsion NASA Missions[R]. USA: NASA, 2015.

Memo

Memo:
-
Last Update: 1900-01-01