[1]KIM V P. Design features and operating procedures in advanced Morozov's stationary plasma thrusters[J]. Technical physics, 2015, 60(3): 362-375.
[2]KHODNENKO V P. Activities of VNIIEM in EPT field History, our days and prospects: IEPC-2013-65[R]. USA:IEPC, 2013.
[3]Anon. Hall ion thrusters to fly on X-37B spaceplane [EB/OL]. http://newatlas.com/us-air-force-x-37B-hall- thruster /37200.
[4]Anon. US Air Force Launches X-37B Space Plane on 4th Mystery Mission [EB/OL]. http://www.space.com/29448- x37b-space-plane-launches-fourth-mission.
[5]Anon. Russia launches spy satellite for Egypt [EB/OL]. http://www.russianspaceweb.com/egyptsat2.
[6]KOPPEL C R, MARCHANDISE F, ESTUBLIER D, et al. The SMART-1 electric propulsion subsystem in flight experience: AIAA 2004-3435[R]. USA: AIAA, 2004.
[7]ARHIPOV B A, BOBER A S, GNIZDOR R Y, et al. The results of 7000-HOUR SPT-100 life testing[C]// Proceedings of 24th International Electric Propulsion Conference. Moscow, Russia: IEPC, 1995: 31-39.
[8]CORNU N, MARCHANDISE F, DARNON F, et al. The PPS?1350-G qualification demonstration: 10500 hrs on the ground and 5000 hrs in flight: AIAA-2007-5197[R]. USA: AIAA, 2007.
[9]DE GRYS K, MATHERS A, WELANDER B, et al. Demonstration of 10,400 hours of operation on a 4.5 kW qualification model Hall thruster: AIAA 2010-6698[R]. USA: AIAA, 2010.
[10]IOANNIS G M, IRA K, RICHARD R H, et al. Magnetic shielding of a laboratory Hall thruster I theory and validation[J]. Journal of applied physics, 2014, 115(4): 043303-043303-20.
[11]CHO S, WATANABE H, KUBOTA K, et al. Parametric kinetic simulation of an IHI high specific impulse SPT-type Hall thruster: AIAA 2014-3426[R]. USA: AIAA, 2014.
[12]HUANG W, SHASTRY R, HERMAN D A, et al. Ion current density study of the NASA-300M and NASA-457Mv2 Hall thrusters: AIAA 2012-3870[R]. USA: AIAA, 2012.
[13]HALL S J, FLORENZY R E, GALLIMOREZ A D, et al. Implementation and initial validation of a 100-kW class nested-channel Hall thruster: AIAA 2014-3815[R]. USA: AIAA, 2014.
[14]MARRESE-READING C M, FRISBEE R, SENGUPTA A, et al. Very high ISP thruster with anode layer (VHITAL): an overview: AIAA 2004-5910[R]. USA: AIAA, 2004.
[15]GEORGE J W, JR, GILLAND J H, PETERSON P Y, et al. Wear testing of the HERMeS thruster: AIAA 2016-5025[R]. USA: AIAA, 2016.
[16]GORBUNOV A V, KHODNENKO V P, KHROMOV A V. Vernier propulsion system for small earth remote sensing satellite “Canopus-V”: IEPC-2011-001[R]. Germany: IEPC, 2011.
[17]DIALLO A, KELLER S, SHI Y, et al. Time-resolved ion velocity distribution in a cylindrical Hall thruster: Heterodyne-based experiment and modeling[J]. Review of scientific instruments, 2015(86): 033506.
[18]鄂鹏, 于达仁, 武志文, 等. 磁场强度对霍尔推力器放电特性影响的实验研究[J]. 物理学报, 2009, 28(4):2535-2542.
[19]杜建华, 周世安, 赵兰, 等. HEP-100MF霍尔推力器电源处理单元[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 861-864.
[20]田立成, 赵成仁, 张天平, 等. LHT-100霍尔电推进系统鉴定试验及集成测试[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 817-829.
[21]高俊, 汤章阳, 刘国西, 等. 我国卫星电推进系统研制情况及应用进展[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 128-135.
[22]钱中, 康小录, 王平阳. 霍尔推力器等离子体羽流粒子模拟[J]. 上海航天, 2009(4): 43-46.
[23]邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究[J]. 物理学报, 2011, 60(2): 025213.
[24]MAZOU S, TSIKATAY S, VAUDOLONZ J, et al. Dev- elopment and characterization of a wall-less Hall thruster: AIAA 2014-3513[R]. USA: AIAA, 2014.
[25]HERMAN D A, UNFRIED K G.. Xenon acquisition strategies for high-power electric propulsion NASA Missions[R]. USA: NASA, 2015.