|Table of Contents|

Influence of plume deposit of ion thruster on thermal control properties of satellite(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年02期
Page:
9-17
Research Field:
研究与设计
Publishing date:

Info

Title:
Influence of plume deposit of ion thruster on thermal control properties of satellite
Author(s):
LIN XiaoxiongTAO JiashengWEN Zheng
Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, China)
Keywords:
ion thrusterplume modelingsatellite thermal controlplume deposition
PACS:
V434-34
DOI:
-
Abstract:
The ion electric thruster plume is plasma that consists of charged particles,which has a tendency to be adsorbed onto satellite surface.The deposition of the plume can change the absorptivity and emissivity of the satellite surface,which has a negative influence on thermal control property of the satellite.In order to predict this influence,a ion thruster plume model was built.The layout position and working parameters of an engineering ion thruster are adopted in the model to simulate the actual conditions of positive ion and electron beam,which makes the model more in accord with reality.The spatial distribution and electric field distribution of ions,electrons and neutral particles,and deposition distribution of molybdenum particles on satellite surface were obtained with numerical simulation.The ion distributions got by simulation calculation and experiment was compared,which validated the correctness of the model analysis.The thermal property of the satellite surface and the maximum envelope of temperature increase in local region of the satellite surface are given in this paper.

References:

[1]DAVID J A, ERIC P, DANIEL V, et al. Products from NASA's in-space propulsion technology program applicable to low-cost planetary missions[J]. Acta astro- nautica, 2014(93): 516-523.
[2]胡照, 王敏, 袁俊刚. 国外全电推进卫星平台的发展及启示[J]. 航天器环境工程, 2015, 32(5): 566-570.
[3]周志成, 高军. 全电推进GEO卫星平台发展研究[J]. 航天器工程, 2015, 24(2):1-6.
[4]方杰, 田辉, 蔡国飙. N20单组元微推进系统及其喷管流场的初步研究[J]. 推进技术, 2005, 26(6): 495-498.
[5]操慧珺, 楚豫川, 曹勇, 等. 离子推进器中离子束中和及推进过程的全粒子数值模拟[J]. 高电压技术, 2014, 40(7): 2119-2124.
[6]YUAN H, JOSEPH J W. Electron kinetic characteristics in plasma plumes: fully kinetic simulations[C]//Procee- dings of 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida: AIAA, 2015: 1-10.
[7]贾艳辉, 李忠明, 张天平, 等. 栅极系统电子返流对离子推力器寿命影响[J]. 真空与低温, 2012, 18(1): 21-25.
[8]ROY R I S, HASTINGS D E, GATSONIS N A. Nume- rical study of spacecraft contamination and interactions by ion-thruster effluents[J]. Journal of spacecraft and rockets, 1996, 33(4): 535-542.
[9]马伟, 宣益民, 韩玉阁, 等. 长寿命卫星热控涂层性能退化及其对卫星热特征的影响[J]. 宇航学报, 2010, 31(2): 568-572.
[10]张天平, 陈继巍, 李小平, 等. 地面寿命试验中离子推力器表面的溅射沉积量计算[J]. 航天器环境工程, 2011, 28(5):4 36-439.
[11]侯增祺, 胡金刚. 航天器热控制技术-原理及其应用[M]. 北京: 中国科学技术出版社, 2007(1): 368-370.
[12]KEMP R F, LUEDKE E E, HALL D F, et al. Effects of electrostatic rocket material deposited on solar cells [C]//Proceedings of the 9th NASA Electric Propulsion Conference. Washington D C: NASA, 1972: 1-10.
[13]范平, 邵建达, 易葵, 等. 纳米Mo膜的光学特性及最小连续膜厚研究[J]. 中国激光, 2005, 32(7): 977-981.
[14]孙安邦, 毛根旺, 陈茂林, 等. 离子推力器羽流特性的粒子模拟[J]. 强激光与粒子束, 2010, 22(2): 401-405.
[15]李娟, 楚豫川, 曹勇. 离子推力器羽流场模拟以及Mo~+CEX沉积分析[J]. 推进技术, 2012, 33(1): 131- 137.
[16]任军学, 顾左, 郭宁, 等. 离子发动机羽流特性的数值模拟[J]. 航空动力学报, 2013, 28(6): 1372-1379.
[17]张尊, 汤海滨. 氙气离子推力器束流等离子体特征参数的Langmuir单探针诊断[J]. 高电压技术, 2013, 39(7): 1602-1608.

Memo

Memo:
-
Last Update: 1900-01-01