|Table of Contents|

Performance analysis of ATR engine working with cracking gas of hydrocarbon fuel(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年03期
Page:
1-5
Research Field:
研究与设计
Publishing date:

Info

Title:
Performance analysis of ATR engine working with cracking gas of hydrocarbon fuel
Author(s):
ZHANG Liuhuan1 LIU Yan2 ZHANG Mengzheng1
1. Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; 2. China Academy of Launch Vehicle Technology, Beijing 100076, China
Keywords:
hydrocarbon fuel cracking ATR engine alkane/alkene ratio engine performance
PACS:
V439-34
DOI:
-
Abstract:
A new scheme about ATR (air turbo rocket) engine driven by cracking gas of hydrocarbon fuel is presented in this paper. The performance of ATR engine working with specific cracking gas components is calculated. The influence law of alkane/alkene ratio from cracking gas on engine performance was obtained. The results show that the thrust increases and the specific impulse has a degressive trend basically as the rotating speed of the engine increases under the same flight condition, and the higher the alkane/alkene ratio of cracking gas rises, the higher the specific impulse becomes at the same rotating speed. The specific impulse of the engine can reach about 7644 m/s while alkane/alkene ratio is 4 and its rotating speed is 70%. The specific heat capacity of cracking gas increases gradually with the rise of alkane/alkene ratio.

References:

[1]CHRISTENSEN K. Air turborocket/vehicle performance comparison[J]. Journal of propulsion and power, 1999, 15(5): 706-712.
[2]南向谊, 王栓虎, 李平. 空气涡轮火箭发动机研究的进展与展望[J]. 火箭推进, 2008, 34(6): 31-35.
NAN Xiangyi, WANG Shuanhu, LI Ping. Investigation on status and prospect of air turbine rocket[J]. Journal of rocket propulsion, 2008, 34(6): 31-35.
[3]TANATSUGU N, NARUO Y, ROKUTANDA I. Test results on air turbo ramjet for a future space plane: AIAA 1992- 5054 [R]. USA: AIAA, 1992.
[4]CHRISTENSEN K. Comparison of methods for calcul- ating turbine work in the air turbo rocket[J]. Journal of propulsion and power, 2001, 17(2): 256-261.
[5]SULLEREY R K, PRADEEP A M, KEDIA M. Perform- ance comparison of air turbo rocket engine with different fuel systems: AIAA 2003-4417[R]. USA: AIAA, 2003.
[6]BUSSI G, COLASURDO G, PASTRONE D. Analysis of air-turbo rocket performance[J]. Journal of propulsion and power, 1995, 11(5): 950-954.
[7]TANATSUGU N. Development study on air turboramjet [J]. Journal of the Gas Turbine Society of Japan , 2002 , 30 (1) : 69-71.
[8]MINATO Ryojiro, HIGASHINO Kazuyuki, TANATSUGU Nobuhiro. Design and development of bio-ethanol fueled GG-cycle air turbo ramjet engine for supersonic: UAV ISABE-2013-1654[R]. [S.l.]: ISABE, 2013.
[9]MINATO R, HIGASHINO H, TANATSUGU N. Design and performance analysis of bio-ethanol fueled GG-cycle air turbo ramjet engine: AIAA 2012-0842[R]. USA: AIAA, 2012.
[10]HARADA K, TANATSUGU N, SATO T. Development study on precooler for ATREX engine: AIAA 1999-4897 [R]. USA: AIAA, 1999.
[11]SAWAI Shujiro, SATO Tetsuya, KOBAYASHI Hiroaki, et al. Flight test plan for ATREX engine development: AIAA 2003-7027[R]. USA: AIAA, 2003.
[12]赵祖亮. 吸热型碳氢燃料结焦与超临界压力下传热性质研究[D]. 硕士学位论文, 浙江大学, 2006.
[13]贺芳, 禹天福, 李亚裕. 吸热型碳氢燃料的研究进展[J]. 导弹与航天运载技术, 2005 (1): 26-29.
[14]CASTALDI M J, LEYLEGIAN J C, CHINITZ Wallace, et al. Development of an effective endothermic fuel platform for regeneratively-cooled hypersonic vehicles: AIAA 2006-4403[R]. USA: AIAA, 2006.
[15]刘志琦. 超燃冲压发动机再生冷却技术研究[D]. 长沙: 国防科学技术大学, 2010.
[16]屈云凤. 超燃冲压发动机冷却通道内碳氢燃料传热及裂解特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[17]王夕. 超临界压力吸热型碳氢燃料热裂解及传热特性研究[D]. 北京: 清华大学, 2013.
[18]贾贞健. 吸热型碳氢燃料正癸烷高温裂解机理研究[D].哈尔滨: 哈尔滨工业大学, 2011.
[19]薛金强, 尚丙坤, 王伟, 等. 吸热型碳氢燃料的裂解及结焦研究进展[J]. 化学推进剂与高分子材料, 2010, 8(3): 8-13.
[20]贾贞健, 周伟星, 黄洪雁, 于文力, 碳氢燃料热裂解与引发裂解换热对比实验[J]. 化工学报, 2008, 65(S1):138- 143.
[21]何龙, 潘富敏, 林瑞森. 吸热型碳氢燃料催化裂解的研究述评[J]. 推进技术, 2001, 22(2): 97-100.
[22]WARD T A, ERVIN J S, STRIEBICH R C, et al. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions[J]. Journal of propulsion and power, 2004, 20(3): 394-402.
[23]咸春雷, 方文军, 张波, 等. 混配型吸热碳氢燃料热裂解及催化裂解[J]. 推进技术, 2003, 24(2): 179-182.
[24]蒋榕培, 周悦, 孙海云. 碳氢燃料裂解促进和抑制作用研究[J]. 浙江大学学报(理学版), 2015, 42(4): 436-439.
[25]ELY J F,HUBER M L. NIST thermophysical properties of hydrocarbon mixtures database(SUPERTRAPP) [R]. USA: NIST, 2016.
[26]胡骏, 吴铁鹰, 曹人靖, 航空叶片机原理[M]. 北京: 国防工业出版社, 2006.

Memo

Memo:
-
Last Update: 1900-01-01