|Table of Contents|

Analysis and test for limit speed of centrifugal impeller in liquid rocket engine (PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2017年05期
Page:
45-51
Research Field:
研究与设计
Publishing date:

Info

Title:
Analysis and test for limit speed of centrifugal impeller in liquid rocket engine
Author(s):
WANG Zhen1TAN Yonghua2HUANG Daoqiong1XUAN Tong1
1.Science and Technology on Liquid Rocket Engine Laboratory, Xi'an 710100,China; 2.Academy of Aerospace Propulsion Technology,Xi'an 710100,China
Keywords:
liquid rocket engine centrifugal pump impeller limit rotation speed maximum positive equivalence stress method double tangent intersection method overspeed spin test
PACS:
V415.1-34
DOI:
-
Abstract:
In order to guarantee the safety and reliability of centrifugal impeller in the liquid rocket engine(LRE),two failure criterions,that is the maximum positive equivalence stress method for strength and the double tangent intersection method for stiffness,are proposed to compute the limit rotation speed of centrifugal pump impeller in LRE.The corresponding overspeed spin tests were conducted to verify and compare the above two failure criterions.The results show that the maximum positive equivalence method can correctly predict the initial position and form of the failure,whose relative error is less than 15%,and the double tangent intersection method has predicted the closest results compared to that of the spin testing,whose relative error is less than 5%.For the centrifugal impellers with high plasticity,the yield speed is selected instead of the burst speed for the limit speed design and analysis,which is more helpful for realization of the low cost and high reliability of design goals.

References:

[1] HUZEL D K, HUANG D H. Modern engineering for design of liquid-propellant rocket engines [M]. USA: AIAA, 1992.
[2] 陈晖, 张恩昭, 谭永华, 等. 高速平板诱导轮的结构设计与分析[J]. 火箭推进, 2009, 35(3): 1-5.
CHEN Hui, ZHANG Enzhao, TAN Yonghua,.et al. Geometry design and analysis of the high-speedrotational plate inducer [J]. Journal of rocket propulsion, 2009, 35(3): 1-5.
[3] NASA. Strength and life assessment requirements for liquid fueled space propulsion system engines: NASA-STD-5012 [S]. USA: NASA, 2006, 6.
[4] BERNSTEIN K S. Structural design requirements and factors of safety for spaceflight hardware for human spaceflight [S]. USA: NASA Johnson Space Center, 2011, 10.
[5] GUICHARD D, LAITHIER F, FOURNIER J P. Development of powder metallurgy impellers for vinci hydrogen turbopump: AIAA 2000-3831 [R]. USA: AIAA, 2000.
[6] OHTA T, KIMOTO K, KAWAI T, et al. Design, fabrication and test of the RL60 fuel turbopump: AIAA 2003-5073 [R]. USA: AIAA, 2003.
[7] GAYDA J, KANTZOS P. High temperature burst testing of a superalloy disks with a dual grain structure: NASA/TM-2004-212884 [R]. USA: NASA, 2004.
[8] JOHNSSON R, BRODIN S, EKEDAHL P, et al. Development of hydrogen and oxygen pump turbines for vinci engine: AIAA 2002-4331 [R]. USA: AIAA, 2002.
[9] 朱大鑫. 涡轮增压与涡轮增压器[M]. 北京: 机械工业出版社, 1992.
[10] 冯引利, 吴长波, 高鹏, 等. 某粉末冶金高温合金涡轮盘破裂转速分析[J]. 航空动力学报, 2013, 28(3): 501-506.
[11] 吴长波, 卿华, 冯引利, 等. 某高压涡轮整体叶盘破裂转速计算方法及试验验证[J]. 燃气涡轮试验与研究, 2006, 19(3): 33-36.
[12] 赵俊生, 马朝臣, 胡辽平. 车用涡轮增压器叶轮破裂转速的弹塑性数值分析[J]. 机械科学与技术, 2008, 27(1): 45-49.
[13] 张德禹, 黄金平, 黄道琼, 等. 离心泵叶轮爆裂转速数值仿真和试验[J]. 计算机辅助工程, 2013, 22(增刊1): 175-178.
[14] 刘璐璐, 宣海军, 洪伟荣. 某型涡轮盘破裂转速计算及试验验证[C]//中国航空学会第七届动力年会文集. 贵阳: 中国航空学会动力专业分会, 2010.
[15] GYEKENYESI J Z, MURTHY P L N, MITAL S K. NASLIFE-component fatigue and creep life prediction program: NASA/TM-2005-213886/REV2 [R]. USA: NASA, 2014.
[16] CEN. Unfired pressure vessel standard: EN 13445-3 [S]. Brussels: European Committee for Standardization, 2002.
[17] 陆君毅, 吴荣仁, 周储, 等. 转子失效分析的重要试验-转子超速破坏试验[J]. 机械工程材料, 1992, 16(6): 54-56.
[18] 窦唯, 金志磊, 闫宇龙. 液体火箭发动机涡轮转子超速离心变形特性研究[J]. 火箭推进, 2015, 41(5): 23-28.
DOU Wei, JIN Zhilei, YAN Yulong. Over-speed centrifugal deformation characteristics of turbine-rotor in liquid propellant rocket engine [J]. Journal ofrocket propulsion, 2015, 41(5): 23-28.

Memo

Memo:
-
Last Update: 2017-11-10