|Table of Contents|

Study on behavior rules of electrostatic atomization for gelled propellant simulant(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2018年03期
Page:
54-61
Research Field:
测控与试验
Publishing date:

Info

Title:
Study on behavior rules of electrostatic atomization for gelled propellant simulant
Author(s):
WU Dezhi1 SUN Yu1 WANG Yong2 LUO Yihui1 ZHAO Yang1 CHEN Qinnan1 WANG Lingyun1 HONG Liu2 SUN Daoheng1
1. School of Aerospace Engineering, Xiamen University, Xiamen 361102, China;2. Science and Technology on Liquid Rocket Engine Laboratory, Xi'an Aerospace Propulsion Institute, Xi'an 710100, China
Keywords:
gelled propellant electrostatic atomization atomization droplet jet-spread angle
PACS:
V439-34
DOI:
-
Abstract:
In view of the atomization difficulty of gelled propellant, electrostatic injection technology was introduced to atomize gelled propellant. The hydrogel simulant was taken as a medium to investigate the feasibility and experimental conditions of the electrostatic atomization technology. When the collection distance is 2~5 cm and the liquid flow rate is and 10~30 μL/h, the gelled simulant can achieve steady atomization. The diameter of collected droplets is less than 100 μm and the jet-spread angle distribution is 8°~36°. Meanwhile, the diameter of atomization droplets and the jet-spread angle decrease with the increase of collection distance and the decrease of nozzle diameter. Under the same conditions, the lower the viscosity of the gel is, the smaller the jet-spread angle and the diameter of atomization droplet become. On this basis, the feasibility of multi-nozzle structure to atomize the gelled propellant and the distribution of atomization area were analyzed for the problem of small thrust from a single nozzle. The results show that the No.2 gelled simulant used in the multi-nozzle structure can obtain a good distribution of atomization area, which is more suitable for gelled propulsion system.

References:

[1] MOSHER D E. Understanding the extraordinary cost growth of missile defense [J]. Arms control today, 2000, 30(10): 9-12.
[2] HODGE K, CROFOOT T, NELSON S. Gelled propellants for tactical missile applications: AIAA 1999-2976 [R]. USA: AIAA, 1999.
[3] Rahimi S, Natan B. Atomization characteristics of gel fuels: AIAA 98-3830 [R]. USA: AIAA, 1998.
[4] 杨伟东, 张蒙正. 凝胶推进剂流变及雾化特性研究与进展[J]. 火箭推进, 2005, 31(5):37-42.
YANG Weidong, ZHANG Mengzheng. Research and development of rheological and atomization characteristics of gelled propellants [J]. Journal of rocket propulsion, 2005, 31(5): 37-42.
[5] 张蒙正,陈炜,杨伟东,等. 撞击式喷嘴凝胶推进剂雾化及表征[J]. 推进技术,2009,30(1):46-50.
[6] 张蒙正,杨伟东,王玫. 双股互击式喷嘴凝胶水雾化特性试验[J]. 推进技术,2008,29(1):22-24,61.
[7] FAKHRI S, LEE J G. Effect of nozzle geometry on the atomization and spray characteristics of Gelled-Propellant simulants formed by two impinging jets [J]. Atomization and sprays, 2010, 12(20): 1033-1046.
[8] Fu Q, Yang L, Zhuang F. Effects of orifice geometry on spray characteristics of impinging jet injectors for gelled propellants[R]. AIAA 2013-3704, 2013.
[9] MA D J, CHEN X D, KHARE P, et al. Atomization patterns and breakup characteristics of liquid sheets formed by two impinging jets: AIAA 2011-97 [R]. USA: AIAA, 2011.
[10] HAN Y, QIANG H, HUANG Q, et al. Improved Implicit SPH Method for simulating free surface flows of power law fluids [J]. China-technological sciences, 2013, 56(10): 2480-2490.
[11] 强洪夫,陈福振,高巍然. 修正表面张力算法的SPH方法及其实现[J]. 计算物理,2011,28(3):375-384.
[12] 强洪夫,韩亚伟,王坤鹏,等. 基于罚函数SPH新方法的水模拟充型过程的数值分析[J]. 工程力学,2011,28(1):245-250.
[13] JIDO M. Burning characteristics of electrostatically sprayed liquid fuel and formation of combined droplets of different fuels [C]// Proceedings of 1989 Industry Applications Society Meeting. [S.l.]: IEEE, 1989, 2: 2058-2065.
[14] 闻建龙, 王军锋, 张军, 等. 柴油高压静电雾化燃烧的研究 [J]. 内燃机学报, 2003, 21(1): 31-34.
[15] WATANABE H, MATSUYAMA T, YAMAMOTO H. Experimental study on electrostatic atomization of highly viscous liquids [J]. Journal of electrostatics, 2003, 57(2): 183-197.
[16] RAYLEIGH L. On the equilibrium of liquid conducting masses charged with electricity [J]. Philos mag. 1882, 14(87): 184-186.
[17] 何超. 燃油静电雾化和燃烧的实验和数值模拟研究[D]. 杭州:浙江大学, 2013.
[18] THERON S A, YARIN A L, ZUSSMAN E, et al. Multiple jets in electrospinning: experiment and modeling [J]. Polymer, 2005, 46(9): 2889-2899.
[19] XIE S, ZENG Y. Effects of electric field on multineedle electrospinning: experiment and simulation study [J]. Industrial & engineering chemistry research, 2012, 51(14): 5336-5345.

Memo

Memo:
-
Last Update: 2018-06-30