|Table of Contents|

Performance study on standard aerosol generators for calibration of PDPA(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2018年04期
Page:
54-59
Research Field:
测控与试验
Publishing date:

Info

Title:
Performance study on standard aerosol generators for calibration of PDPA
Author(s):
SONG GeLIAN Junwei DING Zhenxiao
Beijing Aerospace Propulsion Institute, Beijing 100076, China
Keywords:
PDPA injector aerosol generator measuring error correction optical measurement
PACS:
V432-34
DOI:
-
Abstract:
The injector and nozzle are the core components of the cryogenic liquid rocket propulsion system, whose atomization properties have a direct effect on the efficiency and stability of combustion. Significant data such as the particle diameter distribution of the atomization field of different design parameters can be obtained by means of phase Doppler particle analyzer(PDPA). The standard aerosol generator is the reference source for the calibration and testing of PDPA. The standard particle produced by the standard aerosol generator can be used to calibrate and correct the system error. In combination with injector's atomization measuring characteristics and scattering particle's features of the liquid rocket power system, several typical particle generating technologies are compared and analyzed. On the basis of this, the vibration orifice monodisperse particle generator is selected as the reference source for calibration of PDPA, and an analysis and assessment method of the standard aerosol generator is proposed. With this method, the uniformity, sphericity, accuracy, stability and other technical performance indexes of the generator are obtained. The results prove that the generator is adaptable and reliable in the aspects of optical measurement and calibration of injector's atomization.

References:

[1] POPE S B. Turbulent flows [M]. England: Cambridge University Press, 2000.
[2] 沈熊.激光多普勒测速技术及应用[M]. 北京: 清华大学出版社,2004.
[3] 程圣清, 宋连忠, 王珏. 氢氧火箭发动机预燃室喷注器特性研究[J]. 导弹与航天运载技术,1998(1):6-15.
[4] 黄兵, 张楠. 液体火箭发动机初始雾化液滴分布预测[J].火箭推进,2007,33(2):31-39.
HUANG Bing, ZHANG Nan. Prediction of droplet size distributions of primary atomization in liquid rocket engine [J]. Journal of rocket propulsion, 2007, 33(2): 31-39.
[5] 费俊.射流撞击雾化液滴运动过程与粒径分布特性的试验研究[J].火箭推进,2015,41(1):10-14.
FEI Jun. Experimental analysis on movement and size distribution of atomized droplets from impinging liquid jet [J]. Journal of rocket propulsion, 2015, 41(1): 10-14.
[6] 卢正永.气溶胶科学引论[M], 北京:原子能出版社,2000.
[7] 倪守邦. 国外气溶胶发生装置研制情况.冶金安全[J],1982(1):34-38.
[8] 杜斯特 F, 梅林A, 怀特洛J H.激光多普勒测速技术的原理和实践[M]. 北京:科学出版社,1992.
[9] 刘志军.高效空气过滤器测试用气溶胶发生器的研制及性能评价[D].天津:天津大学,2006.
[10] Thermo-Systems Incorporated(TSI). MDG-100 monosize droplet generator operation and service manual [M]. [S.l.]: TSI, 2006.
[11] Thermo-Systems Incorporated(TSI). Phase doppler particle analyzer(PDPA)laser Doppler velocimeter(LDV)operations manual [M]. [S.l.]: TSI, 2006.
[12] 沈熊等.应用激光相位-多普勒系统测量雾化液滴颗粒和流动特性[J].流体力学实验和测量,2000,14(2):54-60.
[13] 陈剑.应用激光相位多普勒技术对燃料喷雾特性的研究[D].上海:上海交通大学, 2004.
[14] 徐学哲, 赵卫雄, 方波, 等. 标准气溶胶发生系统的建立与性能评估[J].环境科学学报,2016.7(36):2355-2361.

Memo

Memo:
-
Last Update: 1900-01-01