|Table of Contents|

Study on damping characteristic of combustion chamber with acoustic resonators under hot blowing condition(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2018年04期
Page:
60-67
Research Field:
测控与试验
Publishing date:

Info

Title:
Study on damping characteristic of combustion chamber with acoustic resonators under hot blowing condition
Author(s):
s
1. Science and Technology on Liquid Rocket Engine Laboratory,Xi'an Aerospace Propulsion Institute,Xi'an 710100, China; 2. Beijing Aeropace Propulsion Institute,Beijing 100076,China; 3. School of Aerospace,Tsinghua University,Beijing 100084, China
Keywords:
acoustic resonator combustor bomb acoustic characteristic damping characteristic
PACS:
V430-34
DOI:
-
Abstract:
In order to obtain damping properties of a combustor with acoustic resonators under hot blowing condition, influence of resonator, flowing medium, temperature and stimulation source location on sonic wave propagation and attenuation are investigated. Experimental and calculated pressure-time curves of modular combustor under static cold state condition are compared. The results show that resonators can make the acoustics vibration frequency of the combustor shift and result in lower oscillation amplitude; more vibration modes can be stimulated under the static cold condition; the influence rules of the acoustic resonator on 1L and 1T oscillation modes under static cold and hot blowing conditions are almost the same. The correctness of numerical calculation model and a fact that the sonic simulation in cold static flow can be used as effective means to investigate the sonic oscillation properties of combustor are verified.

References:

[1] HAMED A, LASKOWSKI G.A parametric study of slot injection thrust vectoring in a 2DCD Nozzle: AIAA- 1997-3154 [R]. USA: AIAA,1997.
[2] VLADIMIR G B, VIGOR Y. Liquid propellant rocket engine injector dynamics [J]. Journal of propulsion and power,1998,14(5): 797-806.
[3] LEBEDINSKY E V. Research on acoustic mechanism of antipulse baffles effect [C]// Proceedings of Sino, Ru-ssian, Ukrainian Workshop on Space Propulsion. Russia: Kuldysh Research Center, 2002: 1-11.
[4] MURRAY I F. Modeling acoustically induced oscillations of droplets: AIAA-1997-0014 [R]. USA: AIAA, 1997.
[5] KAPPEI F, LEE J Y, JOHNSON C E, et al. Investigation of oscillatory combustion progress in actively controlled li-quid fuel combustor: AIAA-2000-3348 [R]. USA: AIAA, 2000.
[6] 胡伟,李平.双组元轨控发动机声腔技术方案及试验验证[J].火箭推进,2006,32(5):7-11.
HU Wei, LI Ping. The acoustic cavity technique options and test validation of the bipropellant orbit control rocket engine [J]. Journal of rocket propulsion, 2006, 32(5): 7-11.
[7] 聂万胜,庄逢辰.声腔应用于液体火箭发动机不稳定燃烧抑制中的特性研究[J].国防科技大学学报,1998,20(2):12-16.
[8] 聂万胜,庄逢辰,张中光. 液体火箭发动机中声腔抑制不稳定燃烧的声学分析[J].应用声学,2001,20(4):35-39.
[9] 王园,张建润,顾伟,等.不同参数下封闭矩形声腔的结构-声耦合特性分析[J].东南大学学报(自然科学版),2013,43(3):503-508.
[10] 洪鑫,程惠尔,陈杰. 液体火箭发动机燃烧室声腔建模方法研究[J].推进技术,1999,20(6):19-22.
[11] 洪鑫,程惠尔. 液体火箭发动机燃烧室波动过程数值分析[J].推进技术,1999,20(2):5-8.
[12] 严宇,王延涛,李佳明,等.有声腔燃烧室的声学特性实验[J].航空动力学报,2016,31(7):1785-1791.
[13] 张蒙正,张志涛,郁锋,等. 液体火箭发动机单喷注器燃烧室声学特性模拟实验原理及实现[J].声学技术,2007, 26(2):268-272.
[14] 朱宁昌.液体火箭发动机设计[M].北京:宇航出版社,1994.
[15] 葛明龙,郑孟伟.声腔深度和相对开口面积的确定[J].火箭推进,2004,30(4):15-21.
GE Minglong, ZHENG Mengwei. Determination of the depth and fractional open area for acoustic cavity [J]. Journal of rocket propulsion, 2004, 30(4): 15-21.

Memo

Memo:
-
Last Update: 1900-01-01