|Table of Contents|

Effect of inhomogeneous injection on ignition process of rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2018年05期
Page:
21-31
Research Field:
研究与设计
Publishing date:

Info

Title:
Effect of inhomogeneous injection on ignition process of rocket engine
Author(s):
XU WeidongJIN PingCAI Guobiao
School of Astronautics, Beihang University, Beijing 100191, China
Keywords:
inhomogeneous injection ignition pressure peak ignition process of high altitude LOX/CH4 rocket engine transient simulation
PACS:
V434-34
DOI:
-
Abstract:
The transient ignition process of high altitude is a very complicated stage with complex flow and unstable combustion in LOX/CH4 rocket engine.In order to verify whether the inhomogeneous injection is one of the most important reasons causing the increased high ignition pressure peak, the transient numerical method is used to simulate the process.Under the condition of homogeneous injection, the temporal evolutions of temperature and pressure distribution on each specified cross-section of the thrust chamber are obtained, as well as the temporal evolution of pressure at the given measuring points on the injection panel and the side-wall of thrust chamber.The position characteristics of ignition and the oscillation process of pressure wave on the injection panel are revealed during the high-altitude ignition process.Then, with different settings of inhomogeneous injection, it is found that the inhomogeneous injection does not change the maximum pressure peak on the side-wall of thrust chamber, but only changes its position.However, the impact of pressure wave on the injection panel is significantly enhanced.In particular, the average maximum pressure peak experienced by the inner ring nozzles bounded by the diaphragm reaches 30 times of steady pressure in the thrust chamber.Therefore, it is verified that the inhomogeneous injection is an important factor causing the ignition ablation.

References:

[1] 禹天福, 李亚裕.液氧/甲烷发动机的应用前景[J].航天制造技术, 2007(2):1-7+10.
[2] 孙宏明.液氧/甲烷发动机评述[J].推进技术, 2006,32(2):23-31.
[3] 仲伟聪.液氧/甲烷发动机燃烧研究最新进展[J].火箭推进, 2004,30(1):52-57+64.
ZHONG Weicong.Recent advances on LOX/methane combustion for liquid rocket engine [J].Journal of rocket propulsion, 2004, 30(1):52-57+64.
[4] 王维彬, 孙纪国.航天动力发展的生力军-液氧甲烷火箭发动机[J].航天制造技术,2011(2):3-6.
[5] 孙阳, 丰松江, 聂万胜.液氧/甲烷火箭发动机燃烧稳定性影响规律分析[J].导弹与航天运载技术, 2012(5):39-42.
[6] 王珺, 张卫红, 石文靓, 等.60t级液氧/甲烷发动机起动过程建模与仿真[J].火箭推进, 2013,39(5):16-22.
WANG Jun, ZHANG Weihong, SHI Wenjing, et.al.Mode-ling and simulation of start-up process of 60t class LOX/methane liquid rocket engine [J].Journal of rocket propulsion, 2013, 39(5):16-22.
[7] YANG B, CUOCO F, OSCHWAID M.Atomization and flames in LOX/H2- and LOX/CH4- spray combustion [J].Journal of propulsion and power, 2007,23(4):763-771.
[8] 李丹琳, 栾叶君, 孙纪国.液氧/甲烷气液喷注器试验研究[J].火箭推进, 2010, 36(4):59-62.
LI Danlin, LUAN Yejun, SUN Jiguo.Experimental investigation on LOX/CH4 subscale thrust chamber [J].Journal of rocket propulsion, 2010, 36(4):59-62.
[9] 刘红珍, 田原, 孙纪国.液氧/甲烷单喷嘴燃烧性能数值仿真研究[J].火箭推进, 2014, 40(1):56-59.
LIU Hongzhen, TIAN Yuan, SUN Jiguo.Numerical simulation of combustion performance of LOX/methane single nozzle [J].Journal of rocket propulsion, 2014, 40(1):56-59.
[10] 吴栋.小推力液氧/甲烷发动机喷雾燃烧特性研究[D].长沙: 国防科学技术大学, 2014.
[11] 李小平.液氧/甲烷火箭发动机燃烧室稳定特性的实验研究[J].火箭推进, 1997(1):22-34.
LI Xiaoping.Experimental study on stability characteristics of liquid oxygen/methane rocket engine combustion chamber[J].Journal of rocket propulsion, 1997(1):22-34.
[12] 洪流, Fusetti A, Rosa M D,等.液氧/甲烷火焰和燃烧不稳定性试验[J].推进技术, 2007, 28(2):127-131.
[13] SLIPHORST M, GROENING S, KNAPP B, et.al.Combustion instability coupling mechanisms between acoustics and LOx/CH4 spray flames [C]//49th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition.Florida: AIAA, 2011.
[14] 蔡震宇, 王铁岩, 曹红娟.一种气氧/气甲烷火炬式电点火器方案研究[J].载人航天, 2016, 22(3):338-342.
[15] 李春红, 张小平, 马冬英,等.液氧/甲烷燃气发生器点火方案研究[J].火箭推进, 2010, 36(5):7-12.
LI Chunhong, ZHANG Xiaoping, MA Dongying, et.al.Ignition scheme of LOX/methane gas generator [J].Journal of rocket propulsion, 2010, 36(5):7-12.
[16] 马冬英, 卢钢, 张小平,等.液氧/甲烷燃气发生器试验研究[J].火箭推进, 2013, 39(3):21-26.
MA Dongying, LU Gang, ZHANG Xiaoping, et.al.Research on hot tests of LOX/methane gas generator [J].Journal of rocket propulsion, 2013, 39(3):21-26.
[17] CUTRONE L, BATTISTA F.RANUZZI G.A CFD method for simulation of mixing and combustion in high-pressure LOX/methane rocket engines [C]// 46th AIAA Aerospace Sciences Meeting and Exhibit.Nevada:AIAA, 2008.
[18] CUTRONE L, BATTISTA F, RANUZZI G.Supercritical high pressure combustion simulation for LOX/CH4 rocket propulsion systems[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Hartford CT: AIAA/ASME/SAE/ASEE, 2008.
[19] 郑大勇, 陶瑞峰, 胡骏.氢氧发动机真空点火及高空模拟试验[J].导弹与航天运载技术, 2014(5):38-43.
[20] 雷向东, 余协正, 杨京军,等.氧气/煤油点火装置高空点火试验研究[J].火箭推进, 2014, 40(6):37-43.
LEI Xiangdong, YU Xiezheng, YANG Jingjun, et.al.High-altitude ignition tests of oxygen/kerosene ignition system[J].Journal of rocket propulsion, 2014, 40(6):37-43.
[21] 杨青真, 王红梅, 张银波,等.液体火箭发动机氧腔流动分析及均流板设计研究[J].宇航学报, 2005, 26(6):698-701.
[22] 王晓丽.燃气发生器氢腔均流改进设计及试验研究[J].火箭推进, 2011, 37(2):38-42.
WANG Xiaoli.Improved current-sharing design and experimental investigation for hydrogen chamber of gas generator [J].Journal of rocket propulsion, 2011, 37(2):38-42.
[23] 石晓波, 刘占一, 郭灿琳.燃气发生器喷注器内氧腔三维流动分析[J].火箭推进, 2013, 39(2):6-11.
SHI Xiaobo, LIU Zhanyi, GUO Canlin.Analysis of three-dimensional flow in oxygen chamber in injector of gas generator [J].Journal of rocket propulsion, 2013, 39(2):6-11.
[24] ETTNER F, VOLLMER K G, SATTELMAYER T.Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures[J].Journal of combustion, 2014, 2014(1-6):1-15.
[25] 杨永阳.考虑激波串的超声速流动燃烧模型[D].南京: 南京航空航天大学, 2009.
[26] MATSUO K, MIYAZATO Y, KIM H D.Shock train and pseudo-shock phenomena in internal gas flows[J].Progress in aerospace sciences, 1999, 35(1):33-100.

Memo

Memo:
-
Last Update: 1900-01-01