|Table of Contents|

Compression strength analysis of the reinforced S-shaped bellows(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年01期
Page:
19-24
Research Field:
研究与设计
Publishing date:

Info

Title:
Compression strength analysis of the reinforced S-shaped bellows
Author(s):
XU Xuejun1 REN Wu2 YUAN Zhe2 XU Hanle2 ZHU Weiping3
(1.Science and Technology on Liquid Rocket Engine Laboratory, Xi'an 710100, China; 2.Northwestern Polytechnical University, Xi'an 710129, China; 3.Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China)
Keywords:
reinforced S-shaped bellows compression strength mesh density
PACS:
V475
DOI:
-
Abstract:
For the reinforced S-shaped bellows in the fuel swing device of a liquid rocket engine, the theoretical analysis and numerical simulation are used to study its compression strength.The research shows that the finite element model of the reinforced S-shaped bellows for the pressure resistance analysis must be defined as a layered model, becase the simplified single layer model may lead to larger errors.Reasonable selection of the mesh density of the finite element model can not only effectively ensure the accuracy of the compression strength,but also reduce the computing time.Under the condition that the material, total thickness, wave shape and other parameters of the bellows are constant, appropriately increasing the number of bellows layers can increase the radial stiffness and reduce the axial stiffness.

References:

[1] EJMA.Standards of the expansion joint manufacturers association[S].7th ed. New York:EJMA,INC,1998.
[2] BECHT. The effect of bellowsconvolution profile on stress distribution and plastic strain concentration[J]. ASME, Fitness for Service, Stress Classification and Expansion Joint Design, 2000(401): 201-209.
[3] BECHT. Fatigue of bellows, a new design approach[J]. International Journal of Pressure Vessels and Piping, 2000(77): 846-850.
[4] BELTAEV A K, ZINOVIEVA T V, SMIRNOV K.K. Theoretical and experimental studies of the stress-strain state of expansion bellows as elastic shells[J]. St. PetersburgPolytechnical University Journal: Physics and Mathematics, 2017(3): 7-14.
[5] 葛子余.金属软管[M].北京:宇航出版社,1985.
[6] 朱卫平. U型波纹管及相关结构唤醒屈曲的有限元分析(Ⅰ)—基本方程及环板的屈曲[J]. 应用力学学报,2002,19(4): 19-25.
[7] 朱卫平. U型波纹管及相关结构唤醒屈曲的有限元分析(Ⅱ)—半圆环壳的屈曲[J]. 应用力学学报,2003,20(1): 154-156.
[8] 朱卫平. U型波纹管及相关结构唤醒屈曲的有限元分析(Ⅲ)—波纹管平面失稳的机理[J]. 应用力学学报,2003, 20(2): 152-154.
[9] 穆塔里夫·阿赫迈德,程伟,阿斯耶姆·肖凯提.S型焊接金属波纹管的应力仿真与试验研究[J].压力容器,2010,27(1):8-11.
[10] 宋林红,张文良,钱江,等.基于多学科优化方法的金属波纹管疲劳寿命优化设计[C]//第十四届全国膨胀节学术会议论文集.秦皇岛:中国压力容器学会膨胀节委员会,2016.
[11] 郎振华,吴承伟.多层S型波纹管力学性能分析[D].大连:大连理工大学,2012.
[12] 丁雪兴,王悦,刘雪岭,等.机械密封焊接波纹管波片的应力计算及分析[J].兰州理工大学学报,2008,34(1):58-60.
[13] 王占彬,周浩洋,石朝锋,等.一种U型波纹管强度及稳定性分析方法研究[J].兰州强度与环境,2012,39(4):19-24.
[14] 闫松,谭永华,陈建华.高压金属软管应力及参数敏感度分析[J].火箭推进,2013,39(5):60-64.
YAN S,TAN Y H,CHEN J H.Stress and parameter sensitivity analysis of high-pressure metal hose [J].Journal of Rocket Propulsion,2013,39(5): 60-64.
[15] 杨义俊,王心丰.多层波纹管非线性有限元应力分析[J].压力容器,2003,20(9):13-16.
[16] WILLIAMS D K.Catastrophic failure of flex hose bellows due to lateral offset & internal pressure[C]//2007 ASME Pressure Vessels and Piping Antonio. Texas: ASME, 2007:1-9.
[17] 李永生.波形膨胀节实用技术—设计、制造与应用[M].北京: 化学工业出版社, 2000.
[18] 杨义俊.基于 ANSYS 的金属软管非线性有限元应力分析[D].南京: 南京航空航天大学, 2004.
[19] 陈晔, 李永生, 顾伯勤, 等.用 ANSYS 软件对U形波纹管的有限元分析[J].压力容器, 2000, 17(3): 34-36.

Memo

Memo:
-
Last Update: 2019-02-20