|Table of Contents|

Numerical study of heat transfer in variable cross-section cooling channels of LOX/methane rocket engines(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年02期
Page:
9-15
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical study of heat transfer in variable cross-section cooling channels of LOX/methane rocket engines
Author(s):
ZHANG Ming SUN Bing
(School of Astronautics, Beihang University, Beijing 100191, China)
Keywords:
methane transcritical coupled heat transfer rocket engine regenerative cooling sudden contraction/sudden expansion
PACS:
V434.14
DOI:
-
Abstract:
In order to improve the cooling efficiency of regenerative cooling channels of liquid rocket engine thrust chamber, the numerical simulation of the coupled heat transfer in the variable cross-section cooling channels of the LOX/methane engine thrust chamber was carried out to investigate the effects of the aspect ratio on the turbulent flow and convective heat transfer of the transcritical methane in this paper.An improved iterative coupling method was used for the three-dimensional coupling calculation of the hot gas, the cooling channel and the coolant domain.The research results show that when the cooling channel cross-sectional area is constant, increasing the aspect ratio of the cooling channel can reduce the maximum hot-gas-side wall temperature at the throat.The larger the cooling channel aspect ratio is, the greater the coolant pressure loss is.However, excessive aspect ratio will lead to a sharp increase in pressure loss, and the effect of further reducing the maximum temperature of the hot-gas-side wall at the throat is not obvious.The hot-gas-side wall temperature drops at the sudden contraction/sudden expansion structures of variable cross-section cooling channel.And the magnitude of the decrease increases as the aspect ratio decreases.In the large aspect ratio cooling channel, the area where the heat transfer deterioration occurs near the lateral wall surface at the throat is limited, mainly in the lower half of the rib side wall.This paper provides a reference for the design of variable cross-section regenerative cooling channels of the thrust chamber.

References:

[1] KLEPIKOV I A, KATORGIN B I, CHVANOV V K. The new generation of rocket engines, operating by ecologically safe propellant “liquid oxygen and liquefied natural gas(methane)”[J]. Acta Astronautica, 1997, 41(4): 209-217.
[2] CROCKER A M, PEERY S D. System sensitivity studies of a LOX/methane expander cycle rocket engine: AIAA 1998-3674[R]. Cleveland:AIAA, 1998.
[3] PEMPIE P, FROEHLICH T, VERNIN H. LOX/methane and LOX/kerosene high thrust engine trade-off:AIAA 2001-3542[R]. Salt Lake City: AIAA, 2001.
[4] BROWN C D. Conceptual investigations for a methane-fueled expander rocket engine: AIAA 2004-4210[R]. Fort Lauderdale: AIAA, 2004.
[5] 张忠利, 张蒙正, 周立新. 液体火箭发动机热防护[M]. 北京:国防工业出版社, 2016.
[6] 王彦红,李素芬. 方形通道内超临界碳氢燃料传热恶化数值研究[J]. 推进技术, 2016, 37(12):2377-2384.
[7]靳书武,武锦涛,银建中. 水平圆管内超临界甲烷对流换热数值模拟[J]. 应用科技,2015,42(5):67-71.
[8]李斌,张小平,高玉闪.我国可重复使用液体火箭发动机发展的思考[J].火箭推进,2017,43(1):1-7. LI Bin,ZHANG Xiaoping,GAO Yushan.Consideration on development of reusable liquid rocket engine in China[J].Journal of Rocket Propulsion,2017,43(1):1-7.
[9] 陈尊敬,王雷雷,孟华.考虑发动机冷却通道固壁内耦合导热影响的低温甲烷超临界压力传热研究[J].航空学报,2013,34(1):8-18.
[10] WADEL M F.Comparison of high aspect ratio cooling channel designs for a rocket combustion chamber:AIAA 1997-2913[R].Seattle: AIAA, 1997.
[11] 孙冰,宋佳文.液氧甲烷发动机台阶型冷却通道的耦合传热特性[J].航空动力学报,2016,31(12):2972-2978.
[12] ULAS A, BOYSAN E.Numerical analysis of regenerative cooling in liquid propellant rocket engines[J].Aerospace Science and Technology, 2013, 24(1): 187-197.
[13] PIZZARELLI M, NASUTI F, MARCELLO O.Flow analysis of transcritical methane in rectangular cooling channels:AIAA 2008-4556[R].Hartford: AIAA, 2008.
[14] MAGNUSSEN B F.AIAA 81-3757[R].Saint Louis: AIAA, 1981.
[15] SONG J W, SUN B.Coupled numerical simulation of combustion and regenerative cooling in LOX/Methane rocket engines[J].Applied Thermal Engineering, 2016, 106: 762-773.
[16] 康玉东,孙冰.燃气非平衡流再生冷却流动传热数值模拟[J].推进技术,2011,32(1):119-124.
[17] ELY J F, HANLEY H J.Predicition of transport-properties 1.viscosity of fluids and mixtures[J].Industrial & Engineering Chemistry Fundamentals, 1981, 20(4): 323-332.
[18] POLING B E, PRAUSNITZ J M, CONNELL J P.The properties of gases and liquids[M].Boston: McGraw-Hill, 2001.
[19] ESPOSITO J J, ZABORA R F.Thrust chamber life prediction.volume 1: mechanical and physical properties of high performance rocket nozzle materials: NASA-CR-134806[R].Seattle: NASA,1975.
[20] KANG Y, SUN B.Numerical simulation of liquid rocket engine thrust chamber regenerative cooling[J].Journal of Thermophysics and Heat Transfer, 2011, 25(1): 155-164.
[21] PIZZARELLI M, URBANO A, NASUTI F.Nunrical analysis of deteriortion in heat transfer to near-critical rocket propellants[J].Numerical Heat Transfer Part A-Applications, 2010, 57(5): 297-314.
[22] SATO T, SUGIYAMA M, ITOH K, et al.Structural difference between liquid like and gaslike phases in supercritical fluid[J].Physical Review E, Statistical, Nonlinear, and soft Matter Physics, 2008, 78(5): 1-9.
[23] URBANO A, NASUTI F.Onset of heat transfer deterioration in supercritical methane flow channels[J].Journal of Thermophysics and Heat Transfer, 2013, 27(2): 298-308.

Memo

Memo:
-
Last Update: 2019-04-30