|Table of Contents|

Characteristics of water hammer in shutting based on FSI(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年02期
Page:
36-43
Research Field:
研究与设计
Publishing date:

Info

Title:
Characteristics of water hammer in shutting based on FSI
Author(s):
ZHANG Kaihong1JIANG Xin2 XIAO Mingjie1LIANG Shuqiang 1 HU Wei1JI Peng1
(1.Xi'an Aerospace Propulsion Institute, Science and Technology on Liquid Rocket Engine Laboratory,Xi'an 710100,China; 2.Academy of Aerospace Propulsion Technology, Xi'an 710100,China)
Keywords:
FSI water hammer in shutting energy dissipation orbit-control engine pressure wave
PACS:
TV137
DOI:
-
Abstract:
In order to consider the effect of structural deformation on water hammer characteristics, two-way FSI analysis system was built to simulate water hammer.The propagation of pressure wave and energy dissipation were analyzed through pressure and streamline distribution.According to the development trend of orbit-control engine, eight working conditions were designed to analyze the effect of backpressure, flux and valve closing time on water hammer characteristics.The simulation results indicate that, only a small part of the energy of water hammer is dissipated through flowing out from the inlet and the structural deformation, and most of the energy dissipation is due to the viscous loss of the fluid.The flux only affects the peak pressure of water hammer.The greater the flux is, the larger the peak pressure of water hammer is.The shortening of valve closing time increases peak pressure and frequency of oscillation, and reduces the attenuation rate.Backpressure has no effect on water hammer characteristics.Therefore, in the high-pressure water hammer test of orbit-controlled engine, the outlet back-pressure can be reduced under the same flux and valve closing time, and the water hammer pressure curve consistent with that under high backpressure can be obtained.

References:

[1] 杭观荣,洪鑫,康小录.国外空间推进技术现状和发展趋势[J].火箭推进,2013,39(5):7-15. HANG Guanrong,HONG Xin,KANG Xiaolu.Current status and development trend of space propulsion technologies abroad[J].Journal of Rocket Propulsion,2013,39(5):7-15.
[2] 刘晓伟,姚明明,李佳明,等.轻质高比冲1 000N双组元轨控发动机研制[J].火箭推进,2015,41(4):8-12. LIU Xiaowei,YAO Mingming,LI Jiaming,et al.Development of 1 000N bipropellant orbit control engine with light weight and high specific impulse[J].Journal of Rocket Propulsion,2015,41(4):8-12.
[3] 王乃世,罗军,张俊锋.水击压力校准系统快关阀的研发与应用[J].火箭推进,2018,44(4):36-39. WANG Naishi, LUO Jun, ZHANG Junfeng.Development and application of quick-closing valve for water hammer pressure calibration system [J].Journal of Rocket Propul-sion, 2018,44(4):36-39.
[4] 吴持恭.水力学(下册)[M].北京:高等教育出版社,2003:324-369.
[5] 张国忠.管道瞬变流动分析[M].东营:石油大学出版社,1994.
[6] 张峥岳,康乃全.轨姿控液体火箭发动机水击仿真模拟[J].火箭推进,2012,38(3):12-16. ZHANG Zhengyue, KANG Naiquan.Simulation of water hammer in liquid rocket engine of orbit and attitude control sys-tem[J].Journal of Rocket Propulsion, 2012, 38(3): 12-16.
[7] 侯咏梅.水击理论与计算研究[D].郑州:郑州大学,2003.
[8] 李树慧.水击方程的完善与计算研究[D].郑州:郑州大学,2006.
[9] GUINOT V.Riemann solvers for water hammer simulations by Godunov method[J].International Journal for Numerical Methods in Engineering, 2002(49): 851–870.
[10] 郭兰兰,耿介,石硕,等.基于UDF方法的阀门变速关闭过程中的水击压强计算研究[J].山东大学学报(理学版),2014,43(3):27-30, 36.
[11] 张立翔,杨柯,黄文虎.FSI效应对管道水击运动特性的影响分析[J].水电能源科学,2001,19(4):43-47.
[12] 陈香林,周文禄.压力管道流固耦合振动特性分析[J].火箭推进,2007,33(5):27-31. CHEN Xianglin,ZHOU Wenlu.Vibration characteristic analysis of pressure pipes with fluid-structure interaction[J].Journal of Rocket Propulsion,2007,33(5):27-31.
[13] 赵观辉.管路流固耦合振动特性的数值分析方法研究[D].北京: 中国舰船研究院,2011.
[14] CESANA P, BITTER N.Modeling and analysis of water-hammer in coaxial pipes[J].Journal of Fluids and Structures, 2014, 51(3): 225-239.
[15] 朱雨.内外充液换热管流体诱导振动双向流固耦合作用机理的数值模拟研究[D].南昌:南昌大学,2015.
[16] 宋学官,蔡林,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012.
[17] 张岩.ANSYS Workbench 15.0 有限元分析[M].北京:机械工业出版社,2014:259-270.
[18] 倪昊煜.水击理论研究[D].郑州:郑州大学,2004.

Memo

Memo:
-
Last Update: 2019-04-30