|Table of Contents|

Numerical study on flow and heat transfer of air precooler in SABRE(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2019年05期
Page:
8-16
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical study on flow and heat transfer of air precooler in SABRE
Author(s):
WEI Xin JIN Feng LIU Tianyi JI Honghu
(College of Energy and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
Keywords:
precooler supercritical helium average heat transfer coefficient total pressure loss coefficient
PACS:
V438.1
DOI:
-
Abstract:
In order to study the flow and heat transfer characteristics of air precooler in Synergistic Air-Breathing Rocket Engine(SABRE)and provide the technical basis for designing precooler, the effects of tube pitch, tube row, air incidence angle and helium/air heat capacity ratio on the flow and heat transfer of air precooler were numerically studied.The results show that increasing the number of tube rows and reducing the tube spacing can increase the heat transfer power of the precooler and reduce the air outlet temperature.However, they also reduce the average heat transfer coefficient on the air side and helium side, weaken the convective heat transfer coefficient and increase the total pressure loss coefficient of air side.The air incidence angle has little effect on the heat transfer of both sides, but has a significant effect on the total pressure recovery coefficient of air side.Increasing the helium/air heat capacity ratio can reduce the total pressure loss coefficient on the air side, increase the average heat transfer coefficient on both sides, reduce the air outlet temperature and enhance the pre-cooling effect.

References:

[1] VERDTR AETE D,HENDRICK P.Hydrogen fueled precooled air breathing engines for hypersonic aircraft and spaceplanes[C]//20th ISABE.Sweden:Chalmers University,2011.
[2] 张友法, 张文文, 郑日恒, 等.高超声速组合发动机预冷器抗结霜涂层技术研究[J].推进技术, 2017, 38(2): 463-470.
[3] 聂万胜, 周思引, 雷旭. 协同吸气式火箭发动机研究进展[J]. 装备学院学报, 2016, 27(6): 57-64.
[4] LONGSTAFF R, BOND A. The SKYLON project[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. San Francisco, California. Reston, Virigina: AIAA, 2011.
[5] 马海波, 张蒙正. 预冷空气类动力系统发展历程浅析[J]. 火箭推进, 2019, 45(2): 1-8.MA H B, ZHANG M Z. Preliminary analysis on development course of pre-cooling propulsion system[J]. Journal of Rocket Propulsion, 2019, 45(2): 1-8.
[6] 邓帆, 谭慧俊, 董昊, 等.预冷组合动力高超声速空天飞机关键技术研究进展[J].推进技术, 2018, 39(1): 1-13.
[7] WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society, 2009, 62(4):122-130
[8] WEBBER H, TAYLOR N. Tunnel development for heat transfer analysis in compact heat exchangers[C]//27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Chicago, Illinois. Reston, Virigina: AIAA, 2010.
[9] 邹正平, 刘火星, 唐海龙, 等.高超声速航空发动机强预冷技术研究[J].航空学报, 2015, 36(8): 2544-2562.
[10] 汪元, 王振国. 空气预冷发动机及微小通道流动传热研究综述[J]. 宇航学报, 2016, 37(1): 11-20.
[11] DISSEL A.SABRE technology development: IAC-16,C4.9.2.[R].[S.l.]:Reaction Engines Inc,2016.
[12] 张连庆, 刘博, 李浩悦. “佩刀”发动机技术进展分析[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集.大连:[s.n.],2017.
[13] 周建兴, 张浩成, 高启滨, 等. 基于SABRE技术的高超声速预冷飞行器应用分析[J]. 推进技术, 2018, 39(10): 2196-2206.
[14] MURRAY J J, HEMPSELL C M, BOND A.An experimental precooler for airbreathing rocket engines[J].Journal of the British Interplanetary Society, 2001, 54(5):199-209.
[15] MURRAY J J, GUHA A, BOND A.Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers[J].Acta Astronautica, 1997, 41(11): 723-729.
[16] WEBBER H, TAYLOR N.Tunnel development for heat transfer analysis in compact heat exchangers[C]//27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference.Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010.
[17] LEE H, MA S, CHEN Y M, et al.Experimental study on compact heat exchanger for hypersonic aero-engine[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference.Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017.
[18] 李晨沛, 王跃社, 王海军, 等.复合发动机预冷器换热特性研究[J].工程热物理学报, 2017, 38(4): 811-816.
[19] 程惠尔.空气预冷换热器的性能计算[J].推进技术, 1993, 14(6): 44-50.
[20] 郭海波, 肖洪, 南向谊, 等.复合预冷吸气式火箭发动机热力循环分析[J].火箭推进, 2013, 39(3): 15-20.GUO H B, XIAO H, NAN X Y, et al.Analysis on thermodynamic cycle characteristics of synergistic air-breathing rocket engine[J].Journal of Rocket Propulsion, 2013, 39(3): 15-20.
[21] ZHANG J Q, WANG Z G, LI Q L.Thermodynamic efficiency analysis and cycle optimization of deeply precooled combined cycle engine in the air-breathing mode[J].Acta Astronautica, 2017, 138: 394-406.
[22] 张鹏, 王如竹.超流氦传热[M].北京: 科学出版社, 2009.
[23] 张鹏, 黄永华, 陈国邦.氦-4和氦-3及其应用[M].北京:国防工业出版社,2006.
[24] 王冬兰, 朱卫兵, 平登科, 等.燃-滑油换热器壳侧换热特性研究[J].推进技术, 2016, 37(5): 900-906.
[25] 钱滨江.简明传热手册[M].北京: 高等教育出版社, 1983.
[26] CHANG S W.Heat transfer of orthogonal-mode reciprocating tube fitted with twisted-tape[J].Experimental Heat Transfer, 2000, 13(1): 61-86.

Memo

Memo:
-
Last Update: 2019-10-25