|Table of Contents|

Experimental study on cooling characteristics of pintle thruster(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年01期
Page:
13-19
Research Field:
研究与设计
Publishing date:

Info

Title:
Experimental study on cooling characteristics of pintle thruster
Author(s):
LIU Changbo LIN Ge SONG Daliang LING Qiancheng ZHANG Rongjun
(Xi’an Aerospace Propulsion Institute, Xi’an 710100, China)
Keywords:
pintle thruster cooling characteristics thermal protection
PACS:
V434.24文献标识码:A 文章编号:1672-9374(2020)01-0013-07
DOI:
-
Abstract:
Pintle engine has a series of advantages, such as simply thrust adjustment, good acoustic combustion stability, low cost, etc.However,the cooling characteristics are still unclear at present, and the ablating problem due to poor cooling structure of the thruster has occurred many times in the pintle engine development process.In this paper, a pintle thruster article was used to study the cooling characteristics of its body.The results show that, a)the temperature of the thruster pre-cylinder is lower and the usual steel can endure; b)the maximum inner wall temperature of the aft cylinder will reach about 1 650 ℃, and effective thermal protection measures must be taken since there are obvious ablation phenomena locally; c)the cooling characteristics are little affected by the downstream film flow rate.The research results of this paper are useful to optimize the thermal protection of the pintle thruster.

References:

[1] ELVERUM J.Liquid propellant rocket engine coaxial injector:US,3699772[P].1972-102-4.
[2] CASIANO M J, HULKA J R, YANG V.Liquid-propellant rocket engine throttling:a comprehensive review[R].AIAA 2009-5135.
[3] DRESSLER G A, BAUER J M.TRW pintle engine heritage and performance characteristics[R].AIAA 2000-3871.
[4] ELVERUM G, STAUDHAMMER J P, MILLER J, et al.The descent engine for the lunar module[R].AIAA 1967-521.
[5] 刘昌波.针栓式喷注器雾化特性多尺度仿真研究[D].西安:中国航天科技集团公司第六研究院第十一研究所, 2014.
[6] SHIEBER K, RUPERT R C.Assurance of service life of the MIRA 150A varible thrust rocket engine[R].AIAA 1965-608.
[7] BOYD B, JOHNSON R, SMITH T.Application of the MIRA 150A variable thrust rocket engine to mannedlunar exploration flying systems[C]//3rd Propulsion Joint Specialist Conference.Washington, DC, USA.Reston, Virigina:AIAA, 1967.
[8] GILROY R,SACKHEIM R.The lunar module descent engine—a historical perspective[R].AIAA 1989-2385.
[9] DRESSLER G A.Summary of deep throttling rocket engines with emphasis on apollo LMDE[R].AIAA 2006-5220.
[10] CASIANO M J, HULKA J R, YANG V.Liquid-propellant rocket engine throttling:A comprehensive review[R].AIAA 2009-5135.
[11] HARDGROVE J, KRIEG H JR.High performance throttling and pulsing rocket engine[C]//20th Joint Propulsion Conference.Cincinnati, OH, USA.Reston, Virigina:AIAA, 1984.
[12] DRESSLER G A, STODDARD F J, GAVITT K R, et al.Test results from a simple, low-cost, pressure-fed liquid hydrogen/liquid oxygen rocket combustor[C]//JANNAF Propulsion Meeting.Monterey:AIAA,1993.
[13] MUELLER T, DRESSLER G.TRW 40 klbf LOX/RP-1 low cost pintle engine test results[R].AIAA 2000-3863.
[14] 安鹏, 姚世强, 王京丽, 等.针栓式喷注器的特点及设计方法[J].导弹与航天运载技术, 2016(3):50-54.
[15] TR-312-100MN high performance dual mode liquid apogee Engine[EB/OL].[2013-12-30].http://www.northropgrum man.com/Capabilities/PropulsionProductsandServices/Documents/TR-312MN_DMLAE.pdf.
[16] TR-312-100YN high performance dual mode liquid apogee engine[EB/OL].[2013-12-30].http://www.northrop-grumman.com/Capabilities/Propulsion Productsand Services/Documents/TR-312YN_DMLAE.pdf.
[17] CAPOZZOLI P, INSPRUCKER J, SHOTWELL G.The Falcon 9:A new EELV-class man-rated launch vehicle[C]//58th International Astronautical Congress.Hyderabad:IAC, 2007.
[18] BJELDE B, CAPOZZOLI P, SHOTWELL G.ThespaceX falcon 1 launch vehicle flight 3 results, future developments and falcon 9 evolution[C]//59th International Astronautical Congress.Glasgow, United Kingdom:IAC, 2008.
[19] DINARDI A, CAPOZZOLI P, SHOTWELL G.Lowcost launch opportunities provided by falcon family of launch vehicle[C]//The fourth Asian Space Conference 2008.Taibei, Taiwan:[s.n.],2008.
[20] 旷武岳.变推力液体火箭发动机的发展[C]//中国宇航学会液体火箭推进委员会第五届学术会议.西安:中国宇航学会,1990.
[20] 李进贤, 岳春国, 唐金兰, 等.变推力液体火箭发动机技术现状与发展探索[C]//中国宇航学会深空探测技术专业委员会第三届学术会议论文集.西安:中国宇航学会,2006.
[21] 章荣军, 林革, 李福云.变推力液体火箭发动机技术研究[C]//第五届液体火箭推进技术发展研讨会.三亚:中国宇航学会,2005.
[21] 李进贤, 岳春国, 唐金兰, 等.变推力液体火箭发动机技术现状与发展探索[C]//中国宇航学会深空探测技术专业委员会第三届学术会议论文集.西安:中国宇航学会,2006.
[22] 雷娟萍, 兰晓辉, 章荣军, 等.嫦娥三号探测器7500N变推力发动机研制[J].中国科学(技术科学), 2014, 44(6):569-575.
[23] 皮茨D,西索姆L.传热学[M].葛新石,译.北京:科学出版社, 2002.
[24] 刘国球.液体火箭发动机原理[M].北京:中国宇航出版社, 1993.

Memo

Memo:
-
Last Update: 2020-02-25