|Table of Contents|

Research on influence of pressure wave on mixing and condensation of cryogenic gas-liquid two-phase flow in vertical pipe(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年02期
Page:
9-14
Research Field:
研究与设计
Publishing date:

Info

Title:
Research on influence of pressure wave on mixing and condensation of cryogenic gas-liquid two-phase flow in vertical pipe
Author(s):
YANG Chensheng1 FANG Jie12 CAI Guobiao1 TAN Yonghua3
(1.School of Astronautics, Beihang University, Beijing 102206, China; 2.Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; 3.Academy of Aerospace Propulsion Technology, Xi’an 710100, China)
Keywords:
vertical pipe cryogenic gas-liquid two-phase flow pressure wave mixing and condensation flow pattern maximum axial condensation length plume swing frequency
PACS:
V434.3
DOI:
-
Abstract:
In order to study the gas-liquid mixing and condensation as well as the pressure wave propagation in the oxygen pump pipe of the high pressure staged combustion LOX/kerosene rocket engine, a cryogenic gas-liquid mixing in vertical pipe with pressure wave experiment system was constructed.The research on influence of pressure wave on mixing and condensation of cryogenic gas-liquid two-phase in vertical pipe was carried out with oxygen/LOX as working fluid.Interphase mixing images of different pressure wave frequencies and oxygen flow conditions were obtained.The results show that the pressure wave makes the divergent flow pattern change from weak oscillation condensation to intermittent oscillation condensation, and makes the elliptical flow pattern change from stable condensation to oscillation condensation.Under the influence of pressure waves with different frequencies from 0 to 52 Hz, the ratio of the maximum axial condensation length to the orifice diameter of the divergent flow pattern varies between 10 and 30, and the ratio of the elliptical flow pattern varies between 8 and 15.The pressure wave plays a leading and positive correlation to the plume swing frequency.

References:

[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社, 2005.
[2] 李向阳, 王晓锋, 宣统, 等.液氧/煤油发动机煤油预压涡轮泵技术[J].火箭推进, 2009, 35(1):16-20.LI X Y, WANG X F, XUAN T, et al.Techniques of kerosene booster turbopump for LOX/kerosene staged combustion cycle engine[J].Journal of Rocket Propulsion, 2009, 35(1):16-20.
[3] 张育林, 刘昆, 程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社, 2005.
[4] 唐飞, 李家文, 李永, 等.热力学效应对低温诱导轮旋转汽蚀影响的数值研究[J].火箭推进, 2013, 39(2):29-34.TANG F, LI J W, LI Y, et al.Influence of thermodynamics effect on inducer rotating cavitation under low temperature condition[J].Journal of Rocket Propulsion, 2013, 39(2):29-34.
[5] CHUN M H, KIM Y S, PARK J W.An investigation of direct condensation of steam jet in subcooled water[J].International Communications in Heat and Mass Transfer, 1996, 23(7):947-958.
[6] PETROVIC D E WITH A, CALAY R K, DE WITH G.Three-dimensional condensation regime diagram for direct contact condensation of steam injected into water[J].International Journal of Heat and Mass Transfer, 2007, 50(9/10):1762-1770.
[7] XU Q, GUO L J, ZOU S F, et al.Experimental study on direct contact condensation of stable steam jet in water flow in a vertical pipe[J].International Journal of Heat and Mass Transfer, 2013, 66:808-817.
[8] KERNEY P J, FAETH G M, OLSON D R.Penetration characteristics of a submerged steam jet[J].AICHE Journal, 1972, 18(3):548-553.
[9] KIM Y S, YOUN Y J.Experimental study of turbulent jet induced by steam jet condensation through a hole in a water tank[J].International Communications in Heat and Mass Transfer, 2008, 35(1):21-29.
[10] LI Y Z, LI C, CHEN E F, et al.Pressure wave propagation characteristics in a two-phase flow pipeline for liquid-propellant rocket[J].Aerospace Science and Technology, 2011, 15(6):453-464.
[11] 李翠, 庄钰涵, 程亦薇, 等.低温气液两相流中压力波传播特性研究[J].低温工程, 2019(1):1-6.
[12] LI X D, ZHANG H, WANG R S, et al.MUSIG modeling and evaluation of nitrogen bubble coalescence in a bottom-closed vertical tube[J].Aerospace Science and Technology, 2010, 14(3):203-212.
[13] 薛传发,方杰,方雪健,等.垂直管内气液两相掺混冷凝可视化研究[C]//中国航天第三专业信息网第三十五届技术交流会.北京:中国航天第三专业信息网,2014.
[14] 薛传发.垂直管道低温气液两相掺混的流型辨识[D].北京:北京航空航天大学,2015.
[15] 方雪健,方杰,刘雪峰,等.垂直管道氧气-液氧两相掺混轴向冷凝长度研究[C]//中国航天第三专业信息网第三十六届技术交流会.北京:中国航天第三专业信息网,2015.
[16] 方雪健.垂直管道气液两相掺混及其压力波研究[D].北京:北京航空航天大学,2016.
[17] 杨晨声.垂直管道气液两相掺混流压力波研究[D].北京:北京航空航天大学,2018.
[18] KUCZY SKI W, BOHDAL T, CHARUN H.Impact of periodically generated hydrodynamic disturbances on the condensation efficiency of R134a refrigerant in pipe mini-channels[J].Experimental Heat Transfer, 2013, 26(1):64-84.
[19] 方杰,薛传发,方雪健,等.一种适用于低温气液两相掺混的可视化试验装置:ZL201510012811.8[P].2017-07-11.
[20] 方杰,方雪健,杨晨声,等.一种适用于低温介质的压力扰动装置:ZL201610177596.1[P].2018-04-17.

Memo

Memo:
-
Last Update: 2020-04-25