|Table of Contents|

Research on structural dynamic characteristics of the 500-ton LOX/kerosene rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年02期
Page:
44-49
Research Field:
研究与设计
Publishing date:

Info

Title:
Research on structural dynamic characteristics of the 500-ton LOX/kerosene rocket engine
Author(s):
ZHANG Xiangmeng CHEN Hui GAO Yushan QIN Hongqiang
(Xi’an Aerospace Propulsion Institute, Xi’an 710100, China)
Keywords:
500-ton LOX/kerosene rocket engine modal analysis servo loop structure
PACS:
V434.2
DOI:
-
Abstract:
To obtain the structural dynamic characteristics of the 500-ton LOX/kerosene rocket engine which is planed for the manned lunar project, the finite element method was used for modal analysis of the whole structure of the engine.In addition, the factors which may affect the dynamic characteristics were analyzed, thus the modal parameters as well as the approach to optimize the low frequency dynamic characteristics were obtained.In view of large number of subassemblies and complicated structure of the engine, the finite element model of the engine was established by assemble the finite element model of the substructures in combination with some modal test of subassembly.The results show that the first modal frequency of the engine in current state is 8.8 Hz.The optimized results show that the horizontal stiffness in the corresponding direction of the servo loop structure can be enhanced dramatically, which makes the corresponding modal frequency of the engine improved significantly by increasing the dip angle of the pull rod.

References:

[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社, 2005.
[2] 龙乐豪.总体设计:中[M].北京:宇航出版社,1993.
[3] 杨云飞, 陈宇, 李家文, 等.运载火箭摇摆发动机与全箭动力学特性耦合关系研究[J].宇航学报, 2011, 32(10):2095-2102.
[4] 黄道琼, 张继桐, 何洪庆.四机并联发动机低频动态特性分析[J].火箭推进, 2004, 30(4):27-31.HUANG D Q, ZHANG J T, HE H Q.Low frequency dynamic characteristics of four parallel connected engines[J].Journal of Rocket Propulsion, 2004, 30(4):27-31.
[5] 梁俊龙, 谭永华, 孙宏明.补燃发动机总体布局动态设计研究[J].火箭推进, 2005, 31(4):1-7.LIANG J L, TAN Y H, SUN H M.Dynamic design research of staged-combustion engine overall layout[J].Journal of Rocket Propulsion, 2005,31(4):1-7.
[6] 杜飞平, 谭永华, 陈建华.基于子结构试验建模综合的火箭发动机结构动力分析[J].推进技术, 2015, 36(10):1547-1553.
[7] 邵松林.某发动机整机模态分析[J].火箭推进, 2012, 38(4):55-59.SHAO S L.Modal analysis of a rocket engine[J].Journal of Rocket Propulsion, 2012,38(4):55-59.
[8] 陶瑞峰, 吴建军.某液体火箭发动机组合结构模态分析[J].试验技术与试验机, 2008, 48(2):24-27.
[9] 杜大华, 贺尔铭, 李锋.基于多重动态子结构法的大型复杂结构动力分析技术[J].推进技术, 2018, 39(8):1849-1855.
[10] 杜大华, 贺尔铭, 李磊.改进模拟退火算法的喷管动力学模型修正[J].宇航学报, 2018, 39(6):632-638.
[11] 王成林, 刘勇, 文立华.固体火箭发动机柔性喷管有限元建模及摆动分析[J].科学技术与工程, 2012, 12(35):9613-9616.
[12] 黄道琼, 王振, 杜大华.大推力液体火箭发动机中的动力学问题[J].中国科学:物理学 力学 天文学, 2019, 49(2):23-34.
[13] 杨文健.基于模态综合法的运载火箭动力学分析[D].大连:大连理工大学, 2018.
[14] 贾文成, 王鹏辉, 张永亮.新一代大型火箭全箭模态试验[J].强度与环境, 2017, 44(2):1-9.
[15] 董严, 付小燕, 丁志伟.基于多测点数据的火箭飞行模态参数识别方法[J].固体火箭技术, 2018, 41(4):520-523.
[16] 史纪鑫, 葛东明, 范晶岩, 等.大型复杂航天器组装动力学建模方法与应用[J].航天器环境工程, 2019, 36(4):318-322.
[17] 谭永华.中国重型运载火箭动力系统研究[J].火箭推进, 2011, 37(1):1-6.TAN Y H. Research on power system of heavy launch vehicle inChina[J]. Journal of Rocket Propulsion, 2011, 37(1):1-6.
[18] 李斌, 栾希亭, 张小平.载人登月主动力:大推力液氧煤油发动机研究[J].载人航天, 2011, 17(1):28-33.
[19] 秦红强, 张相盟, 张晓光, 等.基于自顶向下模式的液体火箭发动机骨架模型设计[J].火箭推进, 2016, 42(4):58-61.QIN H Q, ZHANG X M, ZHANG X G, et al. Design of liquid rocket engine skeleton model based on top-down mode[J]. Journal of Rocket Propulsion, 2016, 42(4):58-61.
[20] 徐学军, 任武, 袁喆, 等.增强S型波纹管结构耐压强度分析技术[J].火箭推进, 2019, 45(1):19-24.XU X J, REN W, YUAN Z, et al.Compression strength analysis of the reinforced S-shaped bellows[J].Journal of Rocket Propulsion, 2019, 45(1):19-24.

Memo

Memo:
-
Last Update: 2020-04-25