|Table of Contents|

Design optimization of heat shield for main fuel pipeline in high-altitude engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年02期
Page:
71-76
Research Field:
研究与设计
Publishing date:

Info

Title:
Design optimization of heat shield for main fuel pipeline in high-altitude engine
Author(s):
QIN Xinhua1 WANG Xin2 ZHOU Saisai1
(1.Xi’an Aerospace Propulsion Institute, Xi’an 710100, China; 2.Chinese People’s Liberation Army 96901, Beijing 100089, China)
Keywords:
liquid propellant rocket engine heat shield reliability design optimization
PACS:
V431
DOI:
-
Abstract:
For the problem of insufficient thermal protection capability of the heat shield of the main fuel pipeline in high altitude engine during the flight, simulation calculation and analysis under high-altitude plume conditions were carried out.Based on the calculated temperature, it is determined that the heat shield fastener has low tensile strength at high temperatures, and there are weaknesses of Zn-Cr brittle fracture under the condition of high tightening torque, which leads to the fall off of the heat shield.After the heat shield falls off, the insulation material inside the heat shield is blown off by the plume flow, and the connecting flange of main fuel venturi-tube is directly exposed to the high temperature plume environment, which leads to the failure of flange and seal, resulting in the fuel leakage.To improve the design of the heat shield, the cone-shaped heat shield, fastener of high temperature alloy material and multi-layer of high-temperature heat-resistant insulation material are adopted.These optimizations have been validated by the high temperature, vibration, ground and rocket flight tests.

References:

[1] 郭敬, 孔凡超, 胡旭坤.空间发动机羽流研究技术发展综述[J].火箭推进, 2014, 40(6):51-58.GUO J, KONG F C, HU X K.Research on plume flow of space thrusters[J].Journal of Rocket Propulsion, 2014, 40(6):51-58.
[2] JRFONTENOT J E.Thermal radiation from solid rocket plumes at high altitude[J].AIAA Journal, 1965, 3(5):970-972.
[3] WATSON G H, LEE A L.Thermal radiation model for solid rocket booster plumes[J].Journal of Spacecraft and Rockets, 1977, 14(11):641-647.
[4] NELSON H F.Backward Monte Carlo modeling for rocket plume base heating[J].Journal of Thermophysics and Heat Transfer, 1992, 6(3):556-558.
[5] 樊士伟, 张小英, 朱定强, 等.用FVM法计算固体火箭羽流的红外特性[J].宇航学报, 2005, 26(6):793-797.
[6] 张小英, 朱定强, 蔡国飙.固体火箭羽流红外特性的DOM法模拟及高度影响研究[J].宇航学报, 2007, 28(3):702-706.
[7] 亓雪芹, 王平阳, 张靖周, 等.反向蒙特卡罗法模拟波瓣喷管的红外辐射特性[J].上海交通大学学报, 2005, 39(8):1229-1232.
[8] 帅永, 董士奎, 刘林华.高温含粒子自由流红外辐射特性的反向蒙特卡罗法模拟[J].红外与毫米波学报, 2005, 24(2):100-104.
[9] 于胜春, 汤龙生.固体火箭发动机喷管及羽流流场的数值分析[J].固体火箭技术, 2004, 27(2):95-97.
[10] 朱定强, 薛莲, 蔡国飙, 等.轨控发动机真空流场计算[J].宇航学报, 2006, 27(5):830-833.
[11] 程晓丽, 毛铭芳, 阎喜勤.小推力发动机高空羽流场数值模拟[J].空间科学学报, 2002, 22(3):261-267.
[12] 黄琳, 聂万胜, 陈伟芳.姿控发动机高空羽流流场干扰效应的DSMC方法研究[J].空气动力学学报, 2003, 21(1):104-108.
[13] 范瑞祥, 徐珊姝, 宫宇昆, 等.基于CFD/DSMC羽流仿真的新型运载火箭二级尾舱整体防热方案研究[J].载人航天, 2018, 24(4):500-504.
[14] 程晓丽, 李明智, 毛铭芳, 等.高空羽流场的DSMC计算和实验研究[J].空气动力学学报, 2002, 20(1):9-14.
[15] 杨帆, 王平阳, 包轶颖, 等.二级火箭喷流对底部热环境影响的数值模拟[J].上海航天, 2009, 26(5):46-51.
[16] 李茂, 陈世哲, 陈春富.火箭发动机地面水平试车尾流温度场仿真分析[J].火箭推进, 2012, 38(6):29-34.LI M, CHEN S Z, CHEN C F.Simulation analysis on wake flow temperature field of rocket engine in horizontal ground test[J].Journal of Rocket Propulsion, 2012, 38(6):29-34.
[17] 张光喜, 周为民, 张钢锤, 等.固体火箭发动机尾焰流场特性研究[J].固体火箭技术, 2008, 31(1):19-23.
[18] 李猛, 张晓宏, 孙美, 等.改性双基推进剂两相化学反应羽流特性研究[J].弹箭与制导学报, 2012, 32(1):123-126.
[19] 张忠利.液体火箭发动机在高空工作期间喷管及其周围流场研究[J].火箭推进, 2003, 29(2):7-12.ZHANG Z L.Research on plume and nozzle of liquid rocket engine working in high altitude[J].Journal of Rocket Propulsion, 2003, 29(2):7-12.

Memo

Memo:
-
Last Update: 2020-04-25