|Table of Contents|

Study on thermodynamic non-equilibrium phenomenon of rarefied flow in micro-nozzle(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
19-25,40
Research Field:
研究与设计
Publishing date:

Info

Title:
Study on thermodynamic non-equilibrium phenomenon of rarefied flow in micro-nozzle
Author(s):
ZHAO Ya YUAN Junya REN Xiang
(School of Astronautics, Beihang University, Beijing 100191, China)
Keywords:
micro-nozzle numerical simulation flow mechanism work performance thermodynamic non-equilibrium phenomenon
PACS:
V411.6
DOI:
-
Abstract:
As an important component in the micro-propulsion system, the study on the work performance of micro-nozzle has important theoretical guiding significance for the design of the micro-propulsion system. N-S equation with the slip boundary condition and direct simulated Monte Carlo(DSMC)method were used to study the rarefied flow in the micro-nozzle. The thermodynamic non-equilibrium phenomenon in the micro-nozzle was studied by setting the number of relaxation collision Zrot required for the rotational relaxation of the gas molecules. The results show that when Kn>0.1, the flow in the micro-nozzle begins to become rarefied, the continuity assumption fails, and the N-S equation results in errors. With the increase of the flow rarefaction in the micro-nozzle, the thermodynamic non-equilibrium phenomenon is gradually obvious. The thermodynamic non-equilibrium phenomenon reduces the amount of gas internal energy converted into translational kinetic energy in the micro-nozzle, which is followed by the velocity and thrust in the micro-nozzle decreasing. The thermodynamic non-equilibrium phenomenon has greater influence on the flow field of the micro-nozzle than on its working performance. The influence of considering the rotational relaxation on the temperature field is larger than the velocity field in the micro-nozzle

References:

[1] LOUISOS W F, HITT D L. Viscous effects on performance of two-dimensional supersonic linear micronozzles[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 706-715.
[2] LOUISOS W F, HITT D L. Viscous effects on performance of three-dimensional supersonic micronozzles[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 51-58.
[3] LOUISOS W F, HITT D L. Numerical studies of supersonic flow in bell-shaped micronozzles[J]. Journal of Spacecraft and Rockets, 2014, 51(2): 491-500.
[4] LOUISOS W F, ALEXEENKO A A, HITT D L, et al. Design considerations for supersonic micronozzles[J]. International Journal of Manufacturing Research, 2008, 3(1): 80.
[5] 丁英涛, 谢君堂, 仲顺安. 微型喷管内气体流动的流量壅塞现象[J]. 北京理工大学学报, 2006, 26(12): 1086-1089.
[6] 张根烜, 王璐, 张先锋, 等. 微喷管流的连续介质模型及其适用性[J]. 计算物理, 2007, 24(5): 598-604.
[7] XU J L, ZHAO C X. Two-dimensional numerical simulations of shock waves in micro convergent-divergent nozzles[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2434-2438.
[8] LATORRE F, KENJERE S, MOEREL J L, et al. Hybrid simulations of rarefied supersonic gas flows in micro-nozzles[J]. Computers & Fluids, 2011, 49(1): 312-322.
[9] 杨海威, 赵阳, 张大伟. 微喷管过渡区流动的DSMC模拟研究[J]. 哈尔滨工业大学学报, 2007, 39(5): 817-820.
[10] 王海韵, 王长辉, 范匆. 结构参数设计对微喷管性能的影响[J]. 火箭推进, 2017, 43(5): 14-19.
WANG H Y, WANG C H, FAN C. Effects of structure parameter design on performance of micro-nozzle[J]. Journal of Rocket Propulsion, 2017, 43(5): 14-19.
[11] MAXWELL J C. On stresses in rarified gases arising from inequalities of temperature[J]. Philosophical Transactions of the Royal Society,1879, 2(1): 231-256.
[12] GOKCEN T, MACCORMACK R W. Non-equilibrium effects for hypersonic transitional flows using continuum approach[R]. AIAA 1989-0461.
[13] LOCKERBY D A, REESE J M, EMERSON D R, et al. Velocity boundary condition at solid walls in rarefied gas calculations[J]. Physical Review E, 2004, 70: 017303.
[14] LOFTHOUSE A J. Non-equilibrium hypersonic aerothermodynamics using the direct simulation Monte Carlo and Navier-Stokes models[D].[S.l.]:The University of Michigan, 2008.
[15] 曹文斌, 李桦, 高洪贺. 滑移边界条件的收敛性分析及应用[J]. 国防科技大学学报, 2013, 35(1): 12-18.
[16] BORGNAKKE C, LARSEN P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J].Journal of Computational Physics. 1975,18:405-220.
[17] 吴其芬. 高温稀薄气体热化学非平衡流动的DSMC方法[M]. 长沙:国防科技大学出版社, 1999.
[18] LOUISOS W F, HITT D L. Viscous effects on performance of two-dimensional supersonic linear micronozzles[J]. Journal of Spacecraft and Rockets, 2008, 45(4): 706-715.
[19] HITT D L, ZAKRZWSKI C M, THOMAS M A. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition[J]. Smart Materials and Structures, 2001, 10(6): 1163-1175.
[20] PEARL J M, LOUISOS W F, HITT D L. Thrust calculation for low-Reynolds-number micronozzles[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 287-298.
[21] 沈青. 稀薄气体动力学[M]. 北京: 国防工业出版社, 2003.

Memo

Memo:
-
Last Update: 2020-06-25