|Table of Contents|

Temperature control of oxygen-riched gas during complete self start-up process for staged combustion cycle engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
33-40
Research Field:
研究与设计
Publishing date:

Info

Title:
Temperature control of oxygen-riched gas during complete self start-up process for staged combustion cycle engine
Author(s):
GUAN Jie1LIU Shang1LIU Zhirang2
(1. Science and Technology on Liquid Rocket Engine Laboratory,Xi’an 710100,China; 2. Academy of Aerospace Propulsion Technology,Xi’an 710100,China)
Keywords:
liquid rocket engine staged combustion cycle engine complete self-starting temperature of oxygen-riched gas
PACS:
V434.2
DOI:
-
Abstract:
To avoid the ablation during the complete self-starting process of staged combustion cycle engine using an oxidant gas generator, it is necessary to study the method of reducing the peak temperature of oxygen-riched gas. Using the mature mathematical model of engine components, a transient simulation model of engine self-starting process was established, and it was validated by the test data. Based on the calculation results, the temperature change of oxygen-riched gas in the generator during the start-up process was analyzed, and the reason for the three temperature maxima was further analyzed. The influence of different starting parameters on the peak temperature of oxygen-riched gas was analyzed by means of the numerical simulation. The results show that several solutions could be taken to control the peak temperature during start-up process, including improving the oxidizer flow and slowing down the growth rate of secondary fuel flow. The specific measures include increasing the oxidizer tank pressure, reducing the length of supply line, increasing the actuation pressure of stage valve and reducing its conversion rate

References:

[1] 张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[2] 李元启, 刘红军, 徐浩海, 等. 液体火箭发动机动态特性仿真技术研究进展[J]. 火箭推进, 2017, 43(5): 1-6.
LI Y Q, LIU H J, XU H H, et al. Research progress on numerical simulation technology of liquid rocket engine dynamic characteristics[J]. Journal of Rocket Propulsion, 2017, 43(5): 1-6.
[3] 舍维科夫 A A.液体火箭发动机的自动控制理论[M].张兴波,译.西安:航天科技集团公司第六研究院第十一研究所,2002.
[4] 别利亚耶夫 E H,切万诺夫 B B.液体火箭发动机的数学模拟[M].牛晓丽,译.西安:航天科技集团公司第六研究院第十一研究所,2015.
[5] 格列克曼.液体火箭发动机自动调节[M]. 顾明初,译.北京:宇航出版社,1995.
[6] MASON J R,SOUTHWICK R D.Large liquid rocket engine transient performance simulation system final report [R].NASA-CR-184099.
[7] MATTEO F D,ROSA M D.Start-up transient simulation of a liquid rocket engine[R].AIAA 2011-6032.
[8] LYTLE J K. The numerical propulsion system simulation: a multidisciplinary design system for aerospace vehicles[C]//14th international symposium on air breathing engines. Italy:[s.n.],1999.
[9] MEYER C M,MAUL W A.The application of neural networks to the SSME startup transient[R].AIAA 1991-2530.
[10] YAMANISHI N,KIMURA T,TAKAHASHI M,et al.Transient analysis of the LE-7A rocket engine using the rocket engine dynamic simulator(REDS)[R].AIAA 2004-3850.
[11] FUKUSHIMA Y, LMOTO T. Lessons learned in the development of the LE-5 and LE-7[R]. AIAA 1994-3375.
[12] KANMURI A, KANDA T, WAKAMATSU Y. Transient analysis of LOX/LH2 rocket engine(LE-7)[R].AIAA 1989-2736.
[13] 张卫红,李玲玲,颜勇,等.大推力氢氧发动机起动瞬态特性仿真研究[J].航天推进与动力,2004(4):7-12.
[14] 尘军,王桁.高压补燃氢氧发动机系统动态仿真[J].航天推进与动力,2008(2):15-21.
[15] 蒲光荣, 单磊, 赵晓慧, 等. 泵压式多次起动发动机起动过程仿真研究[J]. 火箭推进, 2019, 45(5): 17-24.
PU G R, SHAN L, ZHAO X H, et al. Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine[J]. Journal of Rocket Propulsion, 2019, 45(5): 17-24.
[16] 刘上, 王艺杰, 程晓辉, 等. 小推力泵压式发动机自身起动过程仿真分析[J]. 火箭推进, 2016, 42(4): 7-13.
LIU S, WANG Y J, CHENG X H, et al. Simulation of self start-up process for low thrust pump-fed rocket engine[J]. Journal of Rocket Propulsion, 2016, 42(4): 7-13.
[17] 吴有亮,赵海龙,李强,等.基于Modelica的液氧/甲烷发动机起动过程仿真研究[J].航天推进与动力,2018(2):37-42.
[18] 谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209.

Memo

Memo:
-
Last Update: 2020-06-25