|Table of Contents|

Experimental study on air/LOX/alcohol combustion heater with variable flow rate in large range(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年03期
Page:
56-61
Research Field:
研究与设计
Publishing date:

Info

Title:
Experimental study on air/LOX/alcohol combustion heater with variable flow rate in large range
Author(s):
XIONG Jian XIAO Hong LI Xiaoping LYU Fazheng
(Xi’an Aerospace Propulsion Institute, Xi’an 710100, China)
Keywords:
air/LOX/alcohol wide-range variable flow ignition combustion combustion heater
PACS:
V434.3
DOI:
-
Abstract:
In order to break through the key technologies of reliable ignition and stable combustion of air/LOX/alcohol three-component combustion heater with variable flow rate in lange range, such a combustion heater was developed by using an optimized orifice atomizer to organize combustion and hot firing tests were carried out. The ignition and combustion characteristics of three working conditions were studied. The experimental results show that the heater achieves high efficiency and stable combustion within the range of more than 10 times flow rate, and the combustion efficiency reaches 97% at the design point. A new organizational combustion mode was adopted to realize reliable ignition and stable combustion under wide-range of variable operating conditions and low injection pressure.The heater ignition is 100% successful, and the chamber pressure fluctuation is less than 1% during stable operation.It is reasonable for the ignition procedure of the heater to use plasma ignition flame to enter the combustion chamber first, followed by oxidant and fuel successively

References:

[1] MUSTAFA N S, ABDULLAH U. Investigation of combustion control in the vitiator of a connected pipe setup for ramjet applications[R]. AIAA 2006-814.
[2] DUNSWORTH L C,REED G J. Ramjet engine testing and simulation techniques[J]. Journal of Spacecraft and Rockets, 1979, 16(6): 382-388.
[3] 钟梓鹏. 超燃用煤油燃烧加热器设计方法研究[D]. 西安: 西北工业大学, 2005.
[4] 于守志. 飞航导弹动力装置试验技术[M]. 北京:中国宇航出版社, 1990.
[5] 李小平, 肖虹, 吕发正. 三组元空气加热器的缩尺试验研究[J]. 火箭推进, 2016, 42(1): 26-32.
LI X P, XIAO H, LYU F Z. Investigation on sub-scale test of a tri-propellant air heater[J]. Journal of Rocket Propulsion, 2016, 42(1): 26-32.
[6] 赵芳, 任泽斌. 燃气发生器应用综述[J]. 火箭推进, 2019, 45(3): 1-8.
ZHAO F, REN Z B. Overview of application of combustion-gas generator[J]. Journal of Rocket Propulsion, 2019, 45(3): 1-8.
[7] 杨样, 晏至辉, 蒲旭阳, 等. 新型液氧/空气/异丁烷燃烧加热器研制及流场校测[J]. 推进技术, 2017, 38(12): 2830-2835.
[8] 黎明, 吴二平, 唐明. 高温高压蒸发型燃烧加热器的设计[J]. 航空动力学报, 2009, 24(7): 1443-1448.
[9] 陈延辉. 日本的高超声速吸气式发动机试验设备及试验技术[J]. 飞航导弹, 2006(2): 41-48.
[10] GARRARD D, SEELY J, ABEL L. An analysis of alternatives to provide a varying mach number test capability at APTU[R]. AIAA 2006-8044.
[11] SMITH C, GARRARD D, JACKSON F. The future and way forward for the aerodynamic and propulsion test unit[R].AIAA 2006-8049.
[12] HOUSHANG B E. CFD simulations for imulations for AEDC combustion air heater(CAH)for APTU facility[R]. AIAA 2006-8046.
[13] GARRARD D. Development of the combustion air heater ignition sequence at the aerodynamic and propulsion test unit[R]. AIAA 2009-7359.
[14] 衡思江. 小型航空发动机气动雾化喷嘴雾化特性研究[D]. 北京: 中国科学院, 2015.
[15] 李清廉, 李庆, 王振国. 氧气/醇类燃气发生器启动过程试验研究[J]. 火箭推进, 2010, 36(1): 13-18.
LI Q L, LI Q, WANG Z G. Experimental research of the start-up process of gaseous oxygen/ethanol gas generator[J]. Journal of Rocket Propulsion, 2010, 36(1): 13-18.
[16] 肖虹, 房喜荣, 刘上, 等. 液氧/异丁烷/空气加热器燃烧特性试验及稳定性研究[C]//中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议论文集. 大连: 中国航天第三专业信息网, 2017.
[17] 马冬英, 卢钢, 张小平, 等. 液氧/甲烷燃气发生器试验研究[J]. 火箭推进, 2013, 39(3): 21-26.
MA D Y, LU G, ZHANG X P, et al. Research on hot tests of LOX/methane gas generator[J]. Journal of Rocket Propulsion, 2013, 39(3): 21-26.
[18] 黄玉辉, 王振国, 周进. 三组元发动机燃烧稳定性试验[J]. 推进技术, 2003, 24(1): 71-73.
[19] 李庆, 李清廉, 王振国. 燃气发生器结构对燃烧性能的影响[J]. 航空动力学报, 2008, 23(11): 2062-2067.
[20] 刘国球. 液体火箭发动机原理[M]. 北京: 中国宇航出版社,1993.

Memo

Memo:
-
Last Update: 2020-06-25