|Table of Contents|

Numerical simulation with two-phase flow in annular ejector(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年04期
Page:
31-37
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical simulation with two-phase flow in annular ejector
Author(s):
WU Weifan12 WANG Zhanlin12 KONG Fanchao12 LIU Ruimin12 LI Mao12
(1.Beijing Institute of Aerospace Testing Technology, Beijing 100074,China; 2.Beijing Engineering Research Center of Aerospace Testing Technology and Equipment, Beijing 100074,China)
Keywords:
annular ejector steam ejector numerical simulation phase change vacuum
PACS:
V430
DOI:
-
Abstract:
The steam ejector is an important equipment for the upper stage rocket engine to obtain vacuum during the high altitude simulation test.The numerical simulation method and Fluent was used to study the internal flow field of the annular steam ejector used in the high altitude simulation test of hydrogen oxygen rocket engine.The influences of two-phase flow in water vapor, different inlet conditions and structure sizes on the ultimate vacuum pressure were analyzed.Considering the two-phase flow of water vapor, the condensation phase change model of water vapor was added into the numerical simulation, and the model was verified by the test data.The verification results were as follows, after adding the phase change model, the ultimate vacuum pressure decreases, and the simulation results are closer to the test data.On this basis, the influences of inlet working conditions and structure sizes on the ultimate vacuum pressure were studied.The results showed the ultimate vacuum pressure of ejector can be reduced by reducing the total pressure or increasing the total temperature at steam inlet, reducing the wall width at nozzle outlet or increasing the diameter of mixing chamber under the condition that ejector can start.Therefore, improving the vacuum degree of the ejector can be achieved by changing the inlet conditions or adjusting the structure size.

References:

[1] 陈健, 吴继平, 王振国, 等.高空模拟试车台主被动引射方案数值研究[J].固体火箭技术, 2011, 34(1): 126-130.
[2] HAGHPARAST P, SORIN M V, NESREDDINE H.The impact of internal ejector working characteristics and geometry on the performance of a refrigeration cycle[J].Energy, 2018, 162: 728-743.
[3] 付维娜, 刘中良, 李艳霞, 等.主喷嘴直径对蒸汽喷射器性能的影响[J].化工学报, 2016, 67(S1): 63-68.
[4] 许志敏, 林丽生.蒸汽喷射泵部分结构参数对其性能影响的研究[J].机械研究与应用, 2017, 30(3): 67-70.
[5] 徐万武, 谭建国, 王振国.高空模拟试车台超声速引射器数值研究[J].固体火箭技术, 2003, 26(2): 71-74.
[6] 杨建文, 付秀文, 刘占一, 等.等截面引射器启动性能数值研究[J].应用力学学报, 2014, 31(5): 697-702.
[7] XUE K K, LI K H, CHEN W X, et al.Numerical investigation on the performance of different primary nozzle structures in the supersonic ejector[J].Energy Procedia, 2017, 105: 4997-5004.
[8] SHARIFI N, SHARIFI M.Reducing energy consumption of a steam ejector through experimental optimization of the nozzle geometry[J].Energy, 2014, 66: 860-867.
[9] BESAGNI G, INZOLI F.Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches[J].Applied Thermal Engineering, 2017, 117: 122-144.
[10] 崔明功, 郭然.环形引射器流场研究[J].火箭推进, 2015, 41(2): 75-78.CUI M G, GUO R.Study on flow field of annular ejector[J].Journal of Rocket Propulsion, 2015, 41(2): 75-78.
[11] 周璟莹, 邹伟龙, 黄立还.冲压发动机风洞引射器引射性能模拟[J].火箭推进, 2019, 45(2): 53-59.ZHOU J Y, ZOU W L, HUANG L H.Simulation study on ejection performance of ramjet engine wind tunnel ejector[J].Journal of Rocket Propulsion, 2019, 45(2): 53-59.
[12] 武心壮, 温庆邦, 黄秀杰, 等.超音速真空喷射器性能试验和数值研究[J].机械设计与制造, 2016(8): 111-113.
[13] 唐建峰, 史明亘, 刘杨, 等.结构参数对气体引射器性能的影响研究[J].流体机械, 2012, 40(12): 1-5.
[14] HEMIDI A, HENRY F, LECLAIRE S, et al.CFD analysis of a supersonic air ejector.Part I: Experimental validation of single-phase and two-phase operation[J].Applied Thermal Engineering, 2009, 29(8/9): 1523-1531.
[15] ALDOORI G F.Investigation of refrigeration system steam ejector performance through experiments and computational simulations[D].[S.l.]:University of Southern Queensland School of Mechanical and Electrical Engineering, 2013.
[16] 欧朝.超声速引射器型面优化设计与试验研究[D].长沙: 国防科学技术大学, 2012.
[17] SRIVEERAKUL T, APHORNRATANA S, CHUNNANOND K.Performance prediction of steam ejector using computational fluid dynamics: Part 1.Validation of the CFD results[J].International Journal of Thermal Sciences, 2007, 46(8): 812-822.
[18] RAMESH A S, SEKHAR S J.Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector[J].Energy, 2018, 164: 1097-1113.
[19] 雷宏健.水蒸气喷射泵内部湿蒸汽两相流动的数值模拟[D].沈阳: 东北大学, 2011.
[20] 张军强.蒸汽喷射凝结流动模拟研究[D].锦州: 辽宁工业大学, 2014.
[21] 武洪强.蒸汽喷射器内流动与相变特性的研究[D].北京: 北京工业大学, 2017.

Memo

Memo:
-
Last Update: 2020-07-30