|Table of Contents|

Effect of piezoelectric excitation on jet fragmentation in vacuum environment(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2020年04期
Page:
46-53
Research Field:
研究与设计
Publishing date:

Info

Title:
Effect of piezoelectric excitation on jet fragmentation in vacuum environment
Author(s):
CHEN Pengfei12YAN Xiaoping3SUN Ce2HONG Liu12XIA Yizhi12
(1. Science and Technology on Liquid Rocket Engine Laboratory,Xi’an 710100,China; 2.Xi’an Aerospace Propulsion Institute,Xi’an 710100,China; 3.Academy of Aerospace Propusion Technology,Xi’an 710100,China)
Keywords:
droplet generator vacuum environment piezoelectric excitation experimental measurement jet fragmentation
PACS:
V419
DOI:
-
Abstract:
Aiming at droplet generation technology in vacuum environment,the effects of piezoelectric excitation waveform,frequency and displacement on jet fragmentation were studied by experimental research. The results show that after the piezoelectric excitation of 3 μm is applied to the jet with diameter 0.5 mm at the theoretical optimal frequency,the breaking distance of the jet is shortened to about 90 mm. Compared with the sinusoidal and triangular waves,the jet breaking distance obtained by square wave excitation is the shortest. Near the optimal frequency,with the increase of excitation frequency,droplet diameter decreases,and jet breakup length decreases first and then increases. With the increase of piezoelectric displacement amplitude,jet breakup length decreases slightly. It is found that under the action of piezoelectric force,the excitation frequency has the great influence on jet characteristics,and the frequency corresponding to the shortest breaking distance is larger than the theoretical optimal frequency. The parameters such as excitation waveform and displacement amplitude have relatively small influence on jet breaking characteristics.

References:

[1] RAYLEIGH W S. On the instability of jets[J].Proceedings of the London Mathematical Society,1878(4), 10.
[2] RAYLEIGH W S. On the instability of jets[J].Proceedings of the London Mathematical Society,1879(10), 4-10.
[3] RAYLEIGH W S. Further observations upon liquid jets[J].Proceedings of the London Mathematical Society,1982(34), 130-145.
[4] WEBER C. On the breakdown of a fluid jet [J]. Math and Mech, 1931,11: 136-154.
[5]ORME M, MUNTZ E P. The manipulation of capillary stream breakup using amplitude-modulated disturbances:a pictorial and quantitative representation[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(7): 1124-1140.
[6] ORME M. On the genesis of droplet stream microspeed dispersions[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(12): 2936-2947.
[7] ORME M. A novel technique of rapid solidification net-form materials synthesis[J]. Journal of Materials Engineering and Performance, 1993, 2(3): 399-405.
[8] ORME M, WILLIS K, NGUYEN T V. Droplet patterns from capillary stream breakup[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(1): 80-90.
[9] 侯曾祺,胡金刚. 航天器热控制技术:原理及其应用[M]. 北京:中国科学技术出版社,2007.
[10] ORME M,MUNTZ E P. New technique for producing highly uniform droplet streams over an extended range of disturbancewavenumbers[J]. Review of Scientific Instruments,1987,58(2): 279-284.
[11] MUNTZ E P,ORME M,FARNHAM T,et al. Liquid droplet generation [R]. NASA-CR-182246.
[12] LEFEBVRE A H. Atomization and sprays [M]. USA: Hemisphere Publishing Corporation,1989.
[13] BOUSFIELD D W,STOCKELI H,NANIVADEKAR C K. The breakup of viscous jets with large velocity modulations[J]. Journal of Fluid Mechanics,1990,218: 601.
[14] HILBING J H,HEISTER S D. Droplet size control in liquid jet breakup[J]. Physics of Fluids,1996,8(6): 1574-1581.
[15] BRENN G,LACKERMEIER U. Drop formation from a vibrating orifice generator driven by modulated electrical signals[J].Physics of Fluids,1997,9(12): 3658-3669.
[16] TOTANI T,KODAMA T,NAGATA H,et al. Thermal design of liquid droplet radiator for space solar-power system[J]. Journal of Spacecraft and Rockets,2005,42(3): 493-499.
[17] WEIERSTALL U,DOAK R B,SPENCE J C H,et al. Droplet streams for serial crystallography of proteins[J]. Experiments in Fluids,2008,44(5): 675-689.
[18] 李龙飞,池保华,杨伟东,等. 真空环境下液体射流雾化特性的实验研究[J]. 火箭推进,2010,36(5): 27-30.LI L F,CHI B H,YANG W D,et al. Experimental study on atomization characteristic of liquid jet in vacuum environment[J]. Journal of Rocket Propulsion,2010,36(5): 27-30.
[19] 池保华,洪流,李龙飞,等. 真空模拟环境下液体推进剂蒸发特性的试验研究[J]. 火箭推进,2010,36(1): 71-74.CHI B H,HONG L,LI L F,et al. Experimental study on evaporation characteristics of liquid propellants in vacuum environment[J]. Journal of Rocket Propulsion,2010,36(1): 71-74.
[20] 洪流,池保华,李龙飞,等. 模拟空间环境下射流雾化特性实验[J]. 推进技术,2012,33(5): 765-770.
[21] CHEN Y S,HUANG Y L,KUO C H,et al. Investigation of design parameters for droplet generators driven by piezoelectric actuators[J]. International Journal of Mechanical Sciences,2007,49(6): 733-740.
[22] 周诗贵,习俊通. 压电驱动膜片式微滴喷射仿真与尺度一致性试验研究[J]. 机械工程学报,2013,49(8): 178-185.
[23] 陈鹏飞,徐云飞,孙策,等. 多射流喷射器的压电激励特性[J]. 航空动力学报,2017,32(8): 1815-1821.
[24] POLING B E,PRAUSNITZ J M,O’CONNELL J P. The properties of gases and liquids[M]. 5th ed. USA: McGraw-Hill Companies,2001.
[25] 陈鹏飞, 周晨初, 徐云飞, 等. 真空射流闪蒸特性的气泡动力学分析[J]. 真空科学与技术学报, 2016, 36(7): 753-759.
[26] 王社良,刘敏,樊禹江. 新型压电陶瓷驱动器的特性分析[J]. 材料导报,2012,26(22): 153-156.

Memo

Memo:
-
Last Update: 2020-07-30