|Table of Contents|

Analysis on modal influence factors and vibration safety of rocket engine turbine disk(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年01期
Page:
21-28
Research Field:
研究与设计
Publishing date:

Info

Title:
Analysis on modal influence factors and vibration safety of rocket engine turbine disk
Author(s):
DU Dahua1HUANG Daoqiong1HUANG Jinping1WU Zhihua2
(1. Science and Technology on Liquid Rocket Engines Laboratory, Xi'an 710100, China; 2. R&D Center of System Engineering Department, Academy of Aerospace Propulsion Technology, Xi'an 710100, China)
Keywords:
modal characteristics vibration safety turbine disk liquid rocket engine
PACS:
V434.2
DOI:
-
Abstract:
The modal characteristics and vibration safety of the turbine disk structure are the basis for its dynamics design. First, on the basis of the modal test, an accurate dynamic model of the disk was established. Secondly, the modal analysis was carried out under the effect of multi-physics field, which aimed at studying the influence of temperature field, stress field and coupling effect on the modal characteristics during the disk operating. Finally, the vibration safety of disk was evaluated to obtain its vibration safety margin. The research shows that, the rotational "stiffening" effect of centrifugal force increases the modal frequencies, the temperature effect causes the structural stiffness to decrease and the frequency to decrease, and the aerodynamic force causes the structure to "stiffening" and the frequency to reduce. Under the combined action of force and heat, the order of the degree of influence on the first 6-order modal frequencies are speed, temperature, elastic modulus, thermal stress and aerodynamic force, and the influence of aerodynamic force is negligible. The force and thermal load affect the modal frequency, but not the modal shape. Moreover, the possibility of low-order diameter modals traveling wave coupling resonance of the disk structure excited by turbine gas is very small.

References:

[1] 陶春虎,钟培道,王仁智,等.航空发动机转动部件的失效与预防[M].北京: 国防工业出版社,2001.
[2] 宋兆泓.航空发动机典型故障分析[M].北京: 北京航空航天大学出版社,1993.
[3] 何泽夏,李锋,孙秦,等.涡轮盘结构模态分析[J].机械强度,2006,28(6):927-930.
[4] LOUYOT M,NENNEMANN B,MONETTE C,et al.Modal analysis of a spinning disk in a dense fluid as a model for high head hydraulic turbines[J].Journal of Fluids and Structures,2020,94: 102965.
[5] 李春旺,李海云,王澈,等.航空发动机涡轮叶片振动模态影响因素研究[J].空军工程大学学报(自然科学版),2014,15(1):5-9.
[6] 纪科星,宋宏伟,黄晨光.温度场与应力场对主动冷却发动机振动模态的影响[C]// 第三届高超声速科技学术会议.无锡:[s.n.],2010.
[7]李惠彬,周鹂麟,孙恬恬,等.涡轮增压器叶轮流固耦合模态分析[J].振动、测试与诊断,2008, 28(3):252-255.
[8]陶海亮,郭宝亭,谭春青.基于气热固耦合的涡轮模态分析[J].振动、测试与诊断, 2012,32(6):941-944.
[9]WEDER M,HORISBERGER B,MONETTE C,et al.Experimental modal analysis of disk—like rotor—stator system coupled by viscous liquid[J].Journal of Fluids and Structures,2019,88: 198-215.
[10] HUNADY R,PAVELKA P,LENGVARSKY P.Vibration and modal analysis of a rotating disc using high—speed 3D digital image correlation[J].Mechanical Systems and Signal Processing,2019,121: 201-214.
[11] 张继桐,黄道琼,郭景录.由转速判断涡轮盘行波谐振[J].火箭推进,2005,31(3):14-22.
ZHANG J T,HUANG D Q,GUO J L.Turbine disk traveling—wave resonance identification by using rotation speed[J].Journal of Rocket Propulsion,2005,31(3):14-22.
[12] 任众,朱东华,许开富.多场环境下涡轮盘的强度与振动安全性仿真优化研究[J].火箭推进,2016,42(6):36-42.
REN Z,ZHU D H,XU K F.Multiphysics—based simulation and optimization on strength and vibration security of turbine disk[J].Journal of Rocket Propulsion,2016,42(6):36-42.
[13] SINGH M P,DROSJACK M J.Emerging advanced technologies to assess reliability of industrial steam turbine blade design [Z].
[14]HUANG W H.Free and forced vibration of closely coupled turbomachinery blades [R].AIAA 1980—0700,1980.
[15] 马跃,吴甜,孙新,等.轮盘—轴组件结合面螺栓等效刚度及其对动力学性能影响的研究[J].风机技术,2019,61(2):75-81.
[16] CHUANG Y T.Mass matrix updating for model validation [C]// Proceeding of the 15th International Modal Analysis Conference.Bethel: Society for Experimental Mechanics,1997.
[17] SHEN I Y.Closed—form forced response of a damped,rotating,multiple disks/spindle system[J].Journal of Applied Mechanics,1997,64(2):343-352.
[18] 晏砺堂,宋梓根,李基汉.高速旋转机械振动[M].北京: 国防工业出版社,1994.
[19] 张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京: 国防工业出版社,2001.
[20] 刘本武,王建军,隋雪冰.某型燃气轮机封严盘的结构优化[J]. 航空动力学报, 2014,29(3):563-570.
[21] 徐自力,艾松.叶片结构强度与振动[M].西安:西安交通大学出版社,2018.
[22] 郭秩维,曹航,马青超,等.叶盘耦合振动转/静子叶片数与节径数关系[J].航空动力学报,2019,34(1):99-105.
[23] DU D H,HE E M,HUANG D Q,et al.Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine[J].Journal of Sound and Vibration,2018,437: 53-67.

Memo

Memo:
-
Last Update: 2021-02-20