|Table of Contents|

Process of TLP welding of stainless steel injector in orbit-control engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年01期
Page:
90-96
Research Field:
工艺与材料
Publishing date:

Info

Title:
Process of TLP welding of stainless steel injector in orbit-control engine
Author(s):
SONG Fan1ZHOU Jie2XU Xiaodan2LI Sibei2CHEN Haiwei2
(1.Shanghai Institute of Space Propusion,Shanghai 201112,China; 2. Shanghai Engineering Research Center of Space Engine,Shanghai 201112,China)
Keywords:
injector TLP welding process Nickel-base solder intermediate layer
PACS:
TG456.7
DOI:
-
Abstract:
In order to develop the injector for the new orbit-control engine, the process of TLP welding of the stainless steel ring groove multilayer board was studied. With the increase of welding temperature and holding time, the diffusion of elements gradually deepens. When the diffusion is incomplete, the weld is composed of the solid solution in the edge and the compound in the middle. When the diffusion is complete, the weld is entirely composed of the solid solution. The Ni, Si and B gradually decrease, while the Fe gradually increases in the weld. The diffusion rate of Ni, Fe and B is faster, while the rate of Si is slower. The content of Si and B determines the structure, and the content of Ni affects the tensile properties. The tensile properties increase with the degree of diffusion, and the performance of the best joint can reach 101% of the base material. The fracture morphology changed from intergranular complete brittle fracture to partial plastic fracture of small tough dimples, and finally showed complete plastic fracture of larger tough dimples. For the B-Ni2 intermediate layer with a thickness of 40 μm, the optimal welding temperature, holding time and loading pressure are 1 050~1 075 ℃, 2 h and 0.01~0.02 MPa, respectively. The best parameters have been successfully applied to simulation parts and products, and a new welded orbit-control engine has passed the test.

References:

[1] 单黎波,金作花,贺云龙,等.液体火箭发动机钎焊、扩散焊质量检测技术研究[J].火箭推进,2009,35(6):47-51.
SHAN L B, JIN Z H, HE Y L, et al. Testing techniques of brazing and diffusion welding quality of liquid rocket engine[J].Journal of Rocket Propulsion, 2009, 35(6): 47-51.
[2] 赵鼎,刘琳,孙龙飞.钛合金夹层结构扩散钎焊工艺研究[J].火箭推进,2018,44(1):67-74.
ZHAO D,LIU L,SUN L F.Study on diffusion brazing process for titanium alloy sandwich structure[J].Journal of Rocket Propulsion, 2018, 44(1): 67-74.
[3] 张贵锋,张建勋,王士元,等.瞬间液相扩散焊与钎焊主要特点之异同[J].焊接学报,2002,23(6):92-96.
[4] 宫少涛,李为卫,仝都喜,等.不锈钢的瞬间液相扩散焊研究[J].热加工工艺,2009,38(19):120-121.
[5] 王学刚,闫风洁,严黔,等.中间层成分对TP304H不锈钢瞬间液相连接的影响[J].钢铁研究学报,2008,20(4):43-46.
[6] 张远辉,王非森,张安民.瞬时液相扩散连接工艺参数及应用研究进展[J].热加工工艺,2010,39(9):163-166.
[7] 袁新建,罗军,唐昆仑,等.双相不锈钢瞬时液相连接接头的组织结构及等温凝固模拟[J].焊接学报,2012,33(12):49-52.
[8] 井晓天,陈思杰,卢俊峰,等.TP304H/12Cr1MoV异种钢管的瞬时液相扩散连接[J].焊接学报,2006,27(2):97-101.
[9] 石智华.瞬时液相扩散焊焊接温度场有限元模拟[J].机械制造与自动化,2005,34(4):40-42.
[10] 郭夏阳,林建平,孙博.扩散焊技术的研究进展[J].热加工工艺,2014,43(17):15-20.
[11] 陈思杰,王振江,邢增为.20钢瞬时液相扩散焊降熔元素的扩散过程研究[J].热加工工艺,2008,37(19):105-107.
[12] 何鹏,冯吉才,钱乙余,等.扩散连接接头金属间化合物新相的形成机理[J].焊接学报,2001,22(1):53-55.
[13] 中国机械工程学会焊接学会.焊接手册[M].北京: 机械工业出版社,2016.
[14] 方洪渊.简明钎焊工手册[M].北京: 机械工业出版社,2000.
[15] 张凌云.镍基中间层TLP焊接的组织转变与扩散行为研究[D].兰州: 兰州理工大学,2009.
[16] 赵熹华.压力焊[M].北京:机械工业出版社,2001.
[17] 宋晓国,曹健,冯吉才,等.连接温度对GH4169合金TLP接头界面组织和性能的影响[J].中国有色金属学报,2012,22(9):2516-2521.
[18] 岳龙,俞建荣,邓祎楠,等.TLP焊接工艺对接头界面元素扩散及力学性能的影响[J].热加工工艺,2016,45(13):26-28.
[19] 王海东.压力在TLP焊接过程中的作用[D].兰州: 兰州理工大学,2011.
[20] 郭世敬,陈思杰.瞬时液相扩散焊连接压力的研究[J].热加工工艺,2010,39(1):122-123.

Memo

Memo:
-
Last Update: 2021-02-20