[1] NEILL T, JUDD D, VEITH E, et al. Practical uses of liquid methane in rocket engine applications[J]. Acta Astronautica, 2009, 65(5/6): 696-705. [2] 章思龙, 秦江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 2177-2190. [3] WANG T S, LUONG V. Hot-gas-side and coolant-side heat transfer in liquid rocket engine combustors[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(3): 524-530. [4] LIU Q Y, LUKE E A, CINNELLA P. Coupling heat transfer and fluid flow solvers for multidisciplinary simulations[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(4): 417-427. [5] SONG J W, SUN B. Coupled numerical simulation of combustion and regenerative cooling in LOX/Methane rocket engines[J]. Applied Thermal Engineering, 2016, 106: 762-773. [6] SONG J W, SUN B. Coupled heat transfer analysis of thrust Chambers with recessed shear coaxial injectors[J]. Acta Astronautica, 2017, 132: 150-160. [7] VLADIMIR B, JOSEPH A, ALEXANDER B. New upper stage expander cycles[R]. AIAA,2013-4055,2013. [8] SEZAKI C, OGAWARA A. Characteristics of expander bleed cycle and full expander cycle[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. San Jose, CA: AIAA, 2013. [9] NEGISHI H, DAIMON Y, KAWASHIMA H. Flowfield and heat transfer characteristics in the LE-X expander bleed cycle combustion chamber[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: AIAA, 2014. [10] KAWASHIMA H, SAKAMOTO H, TAKAHASHI M, et al. Hot-gas-side heat transfer characteristics of a ribbed combustor[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver, Colorado: AIAA. [11] NEGISHI H, KUMAKAWA A, MORIYA S, et al. Numerical investigations of heat transfer enhancement in a thrust chamber with hot gas side wall ribs[R].AIAA 2009-830,2009. [12] BETTI B, NASUTI F, MARTELLI E. Numerical evaluation of heat transfer enhancement in rocket thrust Chambers by wall ribs[J]. Numerical Heat Transfer, Part A: Applications, 2014, 66(5): 488-508. [13] 陈建华, 杨宝庆, 周立新, 等. 人为粗糙度强化换热机理分析及效果评估[J]. 火箭推进, 2004, 30(4): 1-5.CHEN J H, YANG B Q, ZHOU L X, et al. The mechanism and effect of artificial roughness on heat transfer enhancement[J]. Journal of Rocket Propulsion, 2004, 30(4): 1-5. [14] HOSSIAN J, TRAN L V, CARPENTER C, et al. Numerical study of enhancement of regenerative cooling using ribs[R]. AIAA 2013-3996,2013. [15] KAMALI R, BINESH A R. The importance of rib shape effects on the local heat transfer and flow friction characteristics of square ducts with ribbed internal surfaces[J]. International Communications in Heat and Mass Transfer, 2008, 35(8): 1032-1040. [16] DANG G X, ZHONG F Q, ZHANG Y J, et al. Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube[J]. International Journal of Heat and Mass Transfer, 2015, 85: 1003-1011. [17] FENG Y, QIN J, BAO W, et al. Numerical analysis of convective heat transfer characteristics of supercritical hydrocarbon fuel in cooling panel with local flow blockage structure[J]. The Journal of Supercritical Fluids, 2014, 88: 8-16. [18] YANG B, SESHADRI K. Asymptotic analysis of the structure of non-premixed methane air Flames using reduced chemistry[J]. Combustion Science and Technology, 1993,88(1-2): 115-132. [19] 康玉东, 孙冰. 燃气非平衡流再生冷却流动传热数值模拟[J]. 推进技术, 2011, 32(1): 119-124.KANG Y D, SUN B. Numerical simulation of regeneraive cooling flow and heat transfer with nonequilibrium flow[J]. Journal of Propulsion Technology, 2011, 32(1): 119-124. [20] SOAVE G. Equilibrium constants from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science, 1972, 27(6): 1197-1203.