|Table of Contents|

Numerical simulation of kerosene/oxygen coaxial centrifugalinjector combustion(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年02期
Page:
32-39
Research Field:
研究与设计
Publishing date:

Info

Title:
Numerical simulation of kerosene/oxygen coaxial centrifugalinjector combustion
Author(s):
WU DiJIN FengLIU Yong
School of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Keywords:
double-shear coaxial centrifugal injector gas/gas combustion oil-gas ratio numerical simulation flow and combustion characteristics
PACS:
V434
DOI:
-
Abstract:
In order to better understand the working characteristics of coaxial centrifugal nozzles, the hydrodynamic characteristics and non-premixed combustion characteristics of nozzles with kerosene/oxygen as propellant based on the DDES(第一次出现,应有说明)model with oil-gas ratios of 0.5, 1, and 1.5 were studied. The research results show that due to the swirling centrifugal effect, there are a stationary vortex and an angular vortex at the nozzle outlet axis and the top of the combustion chamber, respectively. The stationary vortices are distributed in the radial direction from 0.9 R to 1.4 R and the axial dimension is -1 R.~14 R, as the fuel flow increases, the stationary vortex will advance toward the inside of the nozzle, and the radial size will also expand. The combustion calculation results show that as the fuel flow increases, the propellant blending drag zone becomes longer and the blending effect is increased. However, due to the increase of the oil-gasmixing ratio, the combustion temperature decreases, and the flame front moves inward to the nozzle.

References:

[1] 液体火.箭发动机燃烧不稳定性[M]. 科学出版社,(美)V.杨,(美)W.E.安德松主编, 2001 [2] 液体火箭发动机气气燃烧及气气喷注技术[M].国防工业出版社,蔡国飙等著.2012. [3] 液体火箭发动机燃烧过程建模及仿真[M].国防工业出版社,王振国编著,2012. [4] 液体火箭发动机推力室设计[M].国防工业出版社,王治军著,2014. [5] 高玉闪,杜正刚,金平.气氧/甲烷同轴剪切喷注器燃烧特性数值模拟[J].火箭推进,2009,35(05):18-23+33. [5] 高玉闪, 杜正刚, 金平, 等. 气氧/甲烷同轴剪切喷注器燃烧特性数值模拟[J]. 火箭推进, 2009, 35(5): 18-23.GAO Y S, DU Z G, JIN P, et al. Numerical simulation on the combustion characteristic of shear coaxial GO2/ GCH4 injector[J]. Journal of Rocket Propulsion, 2009, 35(5): 18-23.[知网] [6] 高玉闪,金平,蔡国飙.气氧/甲烷与气氢/气氧喷注器燃烧特性对比研究[J].推进技术,2013,34(06):775-780. [6] 高玉闪, 金平, 蔡国飙. 气氧/甲烷与气氢/气氧喷注器燃烧特性对比研究[J]. 推进技术, 2013, 34(6): 775-780.GAO Y S, JIN P, CAI G B. Comparison of combustion characteristics for GO2/CH4 and GH2/GO2 injectors[J]. Journal of Propulsion Technology, 2013, 34(6): 775-780.[知网] [7] Culick.“Unsteady Motions in Combustion Chamber for Propulsion Systems,”AGARDograph,AG-AVT-039,Neuilly-Sur-seine,France,2006. [8] 田原,李丹琳,孙纪国.同轴剪切喷嘴高频喷注耦合燃烧不稳定分析[J].火箭推进,2014,40(03):23-28. [8] 田原, 李丹琳, 孙纪国, 等. 同轴剪切喷嘴高频喷注耦合燃烧不稳定分析[J]. 火箭推进, 2014, 40(3): 23-28.TIAN Y, LI D L, SUN J G, et al. Instability analysis on high-frequency injection-coupled combustion of shear coaxial injector[J]. Journal of Rocket Propulsion, 2014, 40(3): 23-28.[知网] [9] 曹晨,谭永华,陈建华.气喷嘴和声腔对燃烧室声学特性的影响[J].航空动力学报,2019,34(08):1836-1846. [9] 曹晨, 谭永华, 陈建华, 等. 气喷嘴和声腔对燃烧室声学特性的影响[J]. 航空动力学报, 2019, 34(8): 1836-1846.CAO C, TAN Y H, CHEN J H, et al. Effects of gas nozzle and resonators on acoustic characteristics of combustion chamber[J]. Journal of Aerospace Power, 2019, 34(8): 1836-1846.[知网] [10] 俞南嘉,鲍启林,李峰.基于PLIF技术的气氧/气甲烷同轴剪切喷嘴试验[J].航空动力学报,2018,33(10):2483-2491. [10] 俞南嘉, 鲍启林, 李峰, 等. 基于PLIF技术的气氧/气甲烷同轴剪切喷嘴试验[J]. 航空动力学报, 2018, 33(10): 2483-2491.YU N J, BAO Q L, LI F, et al. Experiment on coaxial shear injector of GO2/GCH4 based on PLIF[J]. Journal of Aerospace Power, 2018, 33(10): 2483-2491.[知网] [11] 韩树焘,林洁,俞南嘉.气氧/气甲烷同轴剪切双喷嘴仿真研究[J].火箭推进,2018,44(03):68-75. [11] 韩树焘, 林洁, 俞南嘉, 等. 气氧/气甲烷同轴剪切双喷嘴仿真研究[J]. 火箭推进, 2018, 44(3): 68-75.HAN S T, LIN J, YU N J, et al. Simulation study on gaseous oxygen/methane double injectors with coaxial shear[J]. Journal of Rocket Propulsion, 2018, 44(3): 68-75.[知网] [12] 刘占一,刘计武,汪广旭.气氧甲烷单喷嘴燃烧室壁面热流的测量和数值模拟[J].推进技术,2018,39(05):1033-1040. [12] 刘占一, 刘计武, 汪广旭, 等. 气氧甲烷单喷嘴燃烧室壁面热流的测量和数值模拟[J]. 推进技术, 2018, 39(5): 1033-1040.LIU Z Y, LIU J W, WANG G X, et al. Measurements and numerical simulation of wall heat fluxes in a single-element GO2/GCH4 rocket combustor[J]. Journal of Propulsion Technology, 2018, 39(5): 1033-1040.[知网] [13] Zhi-wei Huang, Guo-qiang He, Fei Qin.Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor,ActaAstronautica,Volume 12,2016,Pages 326-334,ISSN 0094-5765. [13] HUANG Z W, HE G Q, QIN F, et al. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor[J]. Acta Astronautica, 2016, 127: 326-334.[LinkOut] [14] Garby R, Selle L, Poinsot T. Large-Eddy Simulation of combustion instabilities in a variable-length combustor[J]. ComptesRendusMecanique, 2013, 341(s 1–2):220–229. [14] GARBY R, SELLE L, POINSOT T. Large-Eddy Simulation of combustion instabilities in a variable-length combustor[J]. Comptes Rendus Mécanique, 2013, 341(1/2): 220-229.[LinkOut] [15] 白俊强,王波,孙智伟.使用RANS/LES混合方法对钝前缘三角翼进行数值模拟(英文)[J].空气动力学学报,2012,30(03):373-379. [15] BAI J Q, WANG B, SUN Z W. The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method[J]. 空气动力学学报, 2012, 30(3): 373-379.BAI J Q, WANG B, SUN Z W. The application of numerical simulation of delta wing with blunt leading edge using RANS/LES hybrid method[J]. Acta Aerodynamica Sinica, 2012, 30(3): 373-379.[知网] [16] 王明涛,徐惊雷,于洋.基于DOE优化湍流模型的SERN分离点预测数值模拟与实验验证[J].推进技术,2014,35(03):289-295. [16] 王明涛, 徐惊雷, 于洋, 等. 基于DOE优化湍流模型的SERN分离点预测数值模拟与实验验证[J]. 推进技术, 2014, 35(3): 289-295.WANG M T, XU J L, YU Y, et al. Numerical simulation and experimental validation of SERN separation with optimized turbulence model based on DOE method[J]. Journal of Propulsion Technology, 2014, 35(3): 289-295.[知网] [17] 余秋阳,包芸,王圣业.B-C转捩模型的DDES方法模拟转捩大分离流动[J].计算物理,2020,37(01):46-54. [17] 余秋阳, 包芸, 王圣业, 等. B-C转捩模型的DDES方法模拟转捩大分离流动[J]. 计算物理, 2020, 37(1): 46-54.YU Q Y, BAO Y, WANG S Y, et al. DDES for separated transitional flows based on B-C transition model[J]. Chinese Journal of Computational Physics, 2020, 37(1): 46-54.[知网] [18] Wang X, Wang Y, Yang V.Geometric Effects on Liquid Oxygen/Kerosene Bi-Swirl Injector Flow Dynamics at Supercritical Conditions[J]. AIAA Journal, 2017:1-9.[20]Spalding D.A simple model for the rate of turbulent combustion[C]// Aerospace Sciences Meeting. The Royal Society, 2013. [21] 王枫, 李龙飞, 张贵田. 喷嘴结构对液氧煤油火箭发动机高频燃烧不稳定性的影响[J]. 实验力学, 2012, 27(2):178-182. [21] 王枫, 李龙飞, 张贵田. 喷嘴结构对液氧煤油火箭发动机高频燃烧不稳定性的影响[J]. 实验力学, 2012, 27(2): 178-182.WANG F, LI L F, ZHANG G T. Influence of geometrical structure of coaxial injector on high-frequency combustion instability for staged combustion LOX/kerosene rocket engine[J]. Journal of Experimental Mechanics, 2012, 27(2): 178-182.[知网] [22] Oschwald M, Smith J J, Branam R, et al. Injection of fluid into supercritical environment[J]. combustion science and technology, 2006.

Memo

Memo:
-
Last Update: 1900-01-01