[1] 杨立军,富庆飞.液体火箭发动机推力室设计[M].北京: 北京航空航天大学出版社,2013.
[2] 刘昌国,施浙杭,陈锐达,等.液体射流撞击液膜振荡行为的实验研究[J].推进技术,2019,40(12): 2748-2754.
[3] 李佳楠,费俊,杨伟东,等.直流互击式喷注单元雾化特性准直接数值模拟[J].推进技术,2016,37(4): 713-725.
[4] 刘晓伟,胡伟,曹晶,等.鲁泊数和孔径比对直流互击式喷注器性能的影响[J].火箭推进,2010,36(3): 24-27.LIU X W,HU W,CAO J,et al.Effects of Rupe number and ratio of injection orifice diameter on unlike impinging injector performance[J].Journal of Rocket Propulsion,2010,36(3): 24-27.
[5] 郑刚,聂万胜,何博,等.撞击角对撞击式喷嘴雾化特性影响研究[J].推进技术,2015,36(4): 608-613.
[6] NEWHOUSE C W,FOOTE J F.Apollo SM-LM RCS engine development program summary report[R].NASA CR-101930,1969.
[7] 俞肇铭.R4-D双组元姿控发动机的研制(五): 气体混入,推力振荡[J].现代防御技术,1982,10(6): 41-60.
[8] 孙冰,张建伟.火箭发动机热防护技术[M].北京: 北京航空航天大学出版社,2016.
[9] TRAINER D.Effects of flow pattern on the breakup length of circular air-assisted water jets[J].Atomization and Sprays,2018,28(9): 763-777.
[10] TRAINER D.Breakup length and liquid splatter characteristics of air-assisted water jets[J].International Journal of Multiphase Flow,2016,81: 77-87.
[11] SUN C H,NING Z,LV M,et al.Time-frequency analysis of acoustic and unsteadiness evaluation in effervescent sprays[J].Chemical Engineering Science,2015,127: 115-125.
[12] KONSTANTINOV D,MARSH R,BOWEN P J,et al.Effervescent atomization for industrial energy-technology review[J].Atomization and Sprays,2010,20(6): 525-552.
[13] 岳连捷,俞刚.气泡雾化喷嘴液雾特性[J].推进技术,2003,24(4): 348-352.
[14] 孙春华.气泡雾化喷射中气液两相作用及射流喷雾的研究[D].北京: 北京交通大学,2017.
[15] 孙春华,宁智,乔信起,等.气泡雾化喷嘴泡状流出口喷雾脉动特征[J].化工学报,2018,69(10): 4253-4260.
[16] MORRELL G.Rocket thrust variation with foamed liquid propellants[R].NACA RM E56K27,1957.
[17] CASIANO M J,HULKA J R,YANG V.Liquid-propellant rocket engine throttling: a comprehensive review[J].Journal of Propulsion and Power,2010,26(5): 897-923.
[18] 薛帅杰,刘红军,陈鹏飞,等.注气离心喷嘴喷注过程稳定性试验[J].航空学报,2019,40(7): 122697.
[19] 陈坚,李建中,袁丽,等.雾化特性对喷雾燃烧点火过程的影响[J].推进技术,2017,38(6): 1318-1326.
[20] 聂万胜,庄逢辰.喷雾特性对液体火箭发动机燃烧稳定性的影响[J].推进技术,2000,21(3): 56-59.