|Table of Contents|

Influence of lobe mixer in pre-cooling air turbo rocket engine on hydrogen/air mixing performance(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2021年06期
Page:
76-85
Research Field:
专刊
Publishing date:

Info

Title:
Influence of lobe mixer in pre-cooling air turbo rocket engine on hydrogen/air mixing performance
Author(s):
WU YizhenMA YuanHUANG LepingMA WenyouWANG Yi
(Xian Aerospace Propulsion Institute,Xian 710100,China)
Keywords:
precooling combined engine hydrogen-air mixing lobe mixer modified structure streamwise vortex normal vortex thermal mixing efficiency
PACS:
V438
DOI:
-
Abstract:
Lobe mixer is a typical combustion chamber gas mixing device. A precooling combined engine combustion chamber adopts lobe mixer to mix hydrogen and air. In order to obtain the influence of different modified structures on the hydrogen-air mixing performance of the lobe mixer,based on the hydrogen fuel combustor of a precooled combined engine,the guide structure and sawtooth trailing edge were used to modify the lobe mixer. By carrying out numerical simulation and revising the thermal mixing efficiency formula,a comparative analysis was carried out from the aspects of the velocity distribution of the flow field,the streamwise vortex,the normal vortex,and the performance parameters.The results are as follows:1)The guide structure has an important influence on the distribution of the recirculation zone in the flow field, and the larger the plane area of the guide structure,the larger the recirculation zone 2)The increase of the recirculation zone would increase the velocity difference between the inner and outer culverts at the initial position by up to 6 times,reduced the average streamwise vorticities,increased the average normal vorticities and then affected the mixing performance,which of the circular guide structure increased by 3% at the initial stage and decreased by 5.9% at the later stage of flow. 3)The sawtooth trailing edge modified structure reduced the thermal mixing efficiency which of the triangular modified structure reduced by about 2.8%,which was the most obvious than other structures.

References:

[1] 王超. 富燃氢气-空气湍流预混燃烧特性实验研究[D].北京:北京交通大学,2017.
[2] 赵斐,张宏杰. 氢动力内燃机应用前景分析[J].中国资源综合利用,2020,38(6):72-74.
[3] 段冬霞,黄辉,胡宏斌,等. 旋流强度对氢气预混火焰CIVB回火的影响[J].推进技术,2018,39(4):819-826.
[4] WALTER PRESZ J,REYNOLDS G,MCCORMICK D. Thrust augmentation using mixer-ejector-diffuser systems[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston,Virginia:AIAA,1994.
[5] 李文龙,李平,郭海波. 空气涡轮火箭发动机掺混燃烧研究进展[J].火箭推进,2011,37(6):14-19.
LI W L,LI P,GUO H B. Research progresses on turbulent mixing and combustion for air-turbo-rocket engine[J].Journal of Rocket Propulsion,2011,37(6):14-19.
[6] 邵万仁,何敬玉,吴飞,等. 波瓣混合器喷流降噪技术实验[J].航空动力学报,2015,30(7):1645-1650.
[7] BABBITT R,COHN J,FLEMING K. Advanced high bypass mixed-flow exhaust system design study[C]//27th Joint Propulsion Conference. Reston,Virginia:AIAA,1991.
[8] FROST T H. Practical bypass mixing systems for fan jet aero engines[J].Aeronautical Quarterly,1966,17(2):141-160.
[9] BIRCH S F,PAYNTER G C,SPALDING D B,et al.Numerical modeling of three-dimensional flows in turbofan engine exhaust nozzles[J].Journal of Aircraft,1978,15(8):489-496.
[10] PATERSON R W. Turbofan forced mixer-nozzle internal flowfield. Volume 1:a benchmark experimental study[EB/OL].https://www.researchgate.net/publication/24324062_Turbofan_forced_mixer-nozzle_internal_flowfield_Volume_1_A_benchmark_experimental_study,1982.
[11] PATERSON R W. Turbofan mixer nozzle flow field:a benchmark experimental study[J].Journal of Engineering for Gas Turbines and Power,1984,106(3):692-698.
[12] WERLE M,PRESZ W M,PATERSON R. Flow structure in a periodic axial vortex array[C]//25th AIAA Aerospace Sciences Meeting. Reston,Virginia:AIAA,1987.
[13] SKEBE S,PATERSON R,BARBER T. Experimental investigation of three-dimensional forced mixer lobe flow fields[C]//1st National Fluid Dynamics Conference. Reston,Virginia:AIAA,1988.
[14] ELLIOTT J,MANNING T,QIU Y,et al.Computational and experimental studies of flow in multi-lobed forcedmixers[C]//28th Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,1992.
[15] MCCORMICK D C,BENNETT J C. Vortical and turbulent structure of a lobed mixer free shear layer[J].AIAA Journal,1994,32(9):1852-1859.
[16] HU H,SAGA T,KOBAYASHI T,et al.Investigation of the vortex structures downstream of a lobed nozzle by means of dual-plane stereoscopic PIV[J].DLR-Mitteilung,2001(3):751-764.
[17] HU H,SAGA T,KOBAYASHI T,et al.A study on a lobed jet mixing flow by using stereoscopic particle image velocimetry technique[J].Physics of Fluids,2001,13(11):3425-3441.
[18] BELOVICH V M,SAMIMY M. Mixing processes in a coaxial geometry with a central lobed mixer-nozzle[J].AIAA Journal,1997,35(5):838-841.
[19] 陈幸,胡斌,王中豪,等.ATR发动机燃烧室波瓣混合器张角及瓣宽比对掺混、燃烧特性的影响[J].推进技术,2021,42(12):2744-2753.
[20] 刘友宏,李立国. 有无中心锥圆排波瓣喷管引射器内流场模拟与比较[J].航空动力学报,2002,17(3):280-286.
[21] 霍常青,杜涛. 波瓣数对车载燃气轮机波瓣排气混合器性能的影响[J].热能动力工程,2020,35(7):75-83.
[22] 刘友宏,樊超,谢翌,等. 波瓣数对波瓣强迫混合排气系统性能影响[J].航空动力学报,2010,25(8):1683-1689.
[23] 丁玉林,刘友宏,谢翌,等. 尾缘锯齿修形对波瓣强迫混合排气系统性能影响[J].航空动力学报,2012,27(10):2236-2242.
[24] 柴猛. 消旋波瓣混合器的设计及掺混机理研究[D].北京:中国科学院大学(中国科学院工程热物理研究所),2018.
[25] 黄乐萍,南向谊,李光熙,等. 火焰稳定器布局方式对气-气掺混燃烧影响仿真研究[C] //第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会论文集(第一册). 南京:中国科协航空发动机产学联合体,2020.
[26] COOPER N,MERATI P,HU H. Numerical simulation of the vortical structures in a lobed jet mixing flow[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston,Virigina:AIAA,2005.
[27] HU H,SAGA T,KOBAYASHI T,et al.Simultaneous measurements of all three components of velocity and vorticity vectors in a lobed jet flow by means of dual-plane stereoscopic particle image velocimetry[J].Physics of Fluids,2002,14(7):2128-2138.
[28] 郭楠. 菊花形混流器流场计算与设计优化[D].北京:北京航空航天大学,2008.

Memo

Memo:
-
Last Update: 1900-01-01