|Table of Contents|

Engineering data models of performance and mass for ion and Hall electric propulsions(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年01期
Page:
1-13
Research Field:
专论与综述
Publishing date:

Info

Title:
Engineering data models of performance and mass for ion and Hall electric propulsions
Author(s):
ZHANG Tianping12ZHANG Xueer1LI Xuan1
(1. Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou Institute of Physics,Lanzhou 730000,China; 2. Key Laboratory of Space Electric Propulsion Technology of Gansu Province,Lanzhou 730000,China)
Keywords:
performance model mass model ion electric propulsion Hall electric propulsion engineering data
PACS:
V439
DOI:
-
Abstract:
In order to provide a general comparative analysis method for selecting ion or Hall electric propulsion(EP)in the design of aerospace missions,empirical models of performance and mass were established for the EP components based on engineering data. The EP components include thrusters,power processing units,thruster selection units,control units,propellant tanks,pressure regulating units,flow rate units,thruster support mechanisms,cables,and pipelines. Based on these component models,an empirical model of dry mass for the EP system was established. The parameters for this system model include thruster power,the number of thrusters,and propellant mass. The performances and benefits of ion and Hall EP were compared using the system model. The results show the necessity of selecting the EP type with respect to a specific mission.

References:

[1] 张天平,张雪儿.离子电推进的航天器应用实践及启示[J].真空与低温,2019,25(2):73-81.
[2] 康小录,杭观荣,朱智春. 霍尔电推进技术的发展与应用[J].火箭推进,2017,43(1):8-17.
KANG X L,HANG G R,ZHU Z C. Development and application of Hall electric propulsion technology[J].Journal of Rocket Propulsion,2017,43(1):8-17.
[3] 张天平,张雪儿,赵志伟,等. 离子推力器产品特性分析及研制[J].真空电子技术,2021(4):11-18.
[4] GOEBEL D M,KTZ I. Fundamentals of electric propulsion:ion and hall thruster[M].La Canada Flintridge:Jet Propulsion Laboratory,2008.
[5] GARRIGUES L,COCHE P. Electric propulsion:comparisons between different concepts[J].Plasma Physics andControlled Fusion,2011,53(12):124011.
[6] RAWLIN V K,MAJCHER G A. Mass comparisons of electric propulsion systems for NSSK of geosynchronous spacecraft[C]//27th Joint Propulsion Conference.Sacramento,California:[s.n.],1991.
[7] FRANK GULCZINSKI I,SPORES R. Analysis of Hall-effect thrusters and ion engines for orbit transfer missions[C]//32nd Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,1996.
[8] FIEHLER D,OLESON S. A comparison of electric propulsion systems for Mars exploration[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2003.
[9] KOKAN T,JOYNER C. Mission comparison of Hall effect and gridded ion thrusters utilizing various propellant options[C]//AIAA SPACE 2012 Conference & Exposition. Reston,Virginia:AIAA,2012.
[10] HOFER R,RANDOLPH T. Mass and cost model for selecting thruster size in electric propulsion systems[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2011.
[11] CHIEN K R,TIGHE W,BOND T,et al.An overview of electric propulsion at L-3 communications,electron technologies inc[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2006.
[12] BROPHY J,ETTERS M,GATES J,et al.Development and testing of the dawn ion propulsion system[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2006.
[13] HOSKINS A,AADLAND R,MECKEL N,et al.NEXT ion propulsion system production readiness[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2007.
[14] EDWARDS C H,WALLACE N C. T5 ion propulsion assembly for drag compensation on GOCE[C]//Second International GOCE User Workshop. Frascati,Italy:[s.n.],2004.
[15] GRAY H,BOLTER J,KEMPKENS K. BepiColombo –the mercury transfer module[R].IEPC2019-606.
[16] GOLLOR M,FRANKE A. Power processing units - activities in Europe 2015[R].IEPC2015-225.
[17] NISHIYAMA K,HOSODA S,UENO K,et al.Development and testing of the Hayabusa2 ion engine system[J].Transactions of the Japan Society for Aeronautical and Space Sciences,Aerospace Technology Japan,2016,14(30):131-140.
[18] NISHIDA E. Development of xenon ion engine subsystem for ETS-8[R].IEPC1999-053.
[19] ZHANG T P, TANG F J, GEN H,et al.The LIPS-200 ion electric propulsion system development for the DFH-3B satellite platform[C]//64th International Astronautical Congress. Beijing:[s.n.],2013.
[20] ZHANG T P. LIP’s electric propulsion development for Chinese satellite platform[C]//66th International Astronautical Congress. Jerusalem,Israel:[s.n.],2015.
[21] KILLINGER R,BASSNER H,KUKIES R,et al.RITA ion propulsion for ARTEMIS results close to the completion of the life test[C]//37th Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2001.
[22] BUNDESMANN C,TARTZ M,SCHOLZE F,et al.In-situ temperature,grid curvature,erosion,beam and plasma characterization of a gridded ion thruster RIT-22[R].IEPC2009-160.
[23] BOURGUIGNON E,LABILLE J M. Power supply and control unit for grided ion thruster[C]//4th International Spacecraft Propulsion Conference. Cagliari,Italy:[s.n.],2004.
[24] HRUBY P,DEMMONS N,COURTNEY D,et al.Overview of Busek electric propulsion[R].IEPC2019-926.
[25] DE GRYS K,RAYBURN C,WILSON F,et al.Mulit-mode 4.5 kW BPT-4000 hall thruster qulification status[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2003.
[26] KAY R J,FISHER J R,MEYER S D,et al.The Development of a 4.5 kW hall thruster propulsion system power processing unit[R].IEPC2001-333.
[27] JOSEPH C,CHRIS S,TODD A T,et al.13 kW advanced electric propulsion flight system development and qualification[R].IEPC2019-692.
[28] SOENDKER E,HABLITZEL S,HAYNIE C,et al.13 kW advanced electric propulsion system power processing unit development[R].IEPC2019-930.
[29] KAZEEV M N,KHODNENKO V P. Hybrid electric propulsion system on the basis of SPT and PPT[R].IEPC2019-458.
[30] LYNN P R,SANKOVIC J M,CAVENY L H. Electric propulsion demonstration module(EPDM)flight hall thruster system[R].IEPC1997-100.
[31] DAY M,MASLENNIKOV N A,ROGERS W P. SPT-100 subsystem qulification status[R].AIAA1996-2713.
[32] GNIZDOR R,KOMAROV A,MITROFANOVA O,et al.High-impulse SPT-100D thruster with discharge power of 1.0-3.0 kW[R].IEPC2017-40.
[33] DELGADO J J. Qualification of the SPT-140 for use on western spacecraft[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston,Virginia:AIAA,2014.
[34] BOURGUIGNON E,FRASELLE S. PPU Mk3 for 5 kW hall effect thrusters[R].IEPC2017-171.
[35] CORNU N,MARCHANDISE F,DARNON F,et al.PPS1 350 qualification demonstration:10 500 hrs on the ground and 5 000 hrs in flight[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2007.
[36] BOURGUIGNON E,FRASELLE S,SCALAIS T,et al.Power processing unit activities at Thales alenia space in Belgium[R].IEPC2019-584.
[37]DUCHEMIN O,RABIN J,BALIKA L,et al.Qualification status of the PPS5 000 hall thruster unit[R].IEPC2019-906.
[38] HERSCOVITZ J,LEV D R,SHOOR B,et al.VENμS – Updates on technological mission using the Israeli hall effect thruster(IHET)[R].IEPC2019-607.
[39] 田立成,赵成仁,张天平,等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J].推进技术,2017,38(11):2411-2421.
[40] MAO W,WU P A,SHEN Y,et al.Development status of a 5 kW multi-mode high specific impulse hall thruster HEP-140MF[R].IEPC2017-327.
[41] FALKNER M,NITSCHKO T,ZEMANN J,et al.Electric propulsion thruster pointing mechanism(TPM)for EUROSTAR 3 000:Design & development test results[R].IEPC2005-001.
[42] NEUGEBAUER C,JANU P,SCHERMANN R,et al.Electric propulsion pointing mechanism for Bepi Colombo[R].IEPC2011-303.
[43] FALKNER M. Ion thruster pointing mechanism(ITAM)for Artemis:Design & performace[R].IEPC1999-057.
[44] NEUGEBAUER C,JANU P,PAMMER J,et al.Electric propulsion pointing mechanism(EPPM)for the spacebus Neo platform[R].IEPC2019-243.
[45] BLANC A,CHAMPANDARD F,LAUTIER J M,et al.@BUS thruster orientation mechanism delta design[C]//13th European Space Mechanisms and Tribology Symposium.Vienna,Austria:[s.n.],2009.
[46] KUNINAKA H,NISHIYAMA K,SHIMIZU Y,et al.Flight status of cathode-less microwave discharge ion engines onboard HAYABUSA asteroid explorer[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston,Virginia:AIAA,2004.
[47] CARDIN J,COOK W,BHANDARI R. Qualification of an advanced xenon flow control module[R].IEPC2013-382.
[48] PENCIL E,PETERSON T,ANDERSON D J,et al.Overview of NASA’s electric propulsion development activities for robotic science missions[R].IEPC2011-161.
[49] PORTSMOUTH A R,HAMPSHIRE P O. Design and development of an electronic pressure regulator for use on ion propulsion systems[R].IEPC1997-033.
[50] STEPHAN J M.Electric propulsion activities for Eurostar 3 000[C]//3rd International Conference on Spacecraft Propulsion.Cannes:[s.n.],2000.
[51] O’SULLIVAN D,MCGUINNESS E,HARRIS D,et al.Mechanical pressure regulator for the xenon feed system on the alphabus platform[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston,Virginia:AIAA,2006.
[52] SMITH P. Xenon flow control unit development and qualification programme[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston,Virginia:AIAA,2006.
[53] BUSHWAY E D,KING P T,ENGELBRECHT C,et al.A xenon flowrate controller for hall current thruster applications 1[R].IEPC2001-315.
[54] HANG G R,LI L,JIA Q Q,et al.Development of porous-metal-restrictor based xenon flow control modules[R].IEPC2019-400.
[55] SCH?F S,WIEGAND A. Future mission concepts using high power electric propulsion[C]//New Trends in Astrodynamics and Applications VI.New York:[s.n.],2011.

Memo

Memo:
-
Last Update: 1900-01-01