[1] 梁俊龙, 张贵田, 秦艳平.基于高阶WENO格式的喷管动态特性仿真分析[J].火箭推进, 2015, 41(4):29-36.
LIANG J L, ZHANG G T, QIN Y P.Simulated analysis on nozzle dynamic characteristics based on high-order WENO scheme[J].Journal of Rocket Propulsion, 2015, 41(4):29-36.
[2] 丁兆波.一种大面积比喷管的分段式设计与数值分析[J].火箭推进, 2013, 39(1):19-23.
DING Z B.Design and numerical analysis of segmental nozzle with high area ratio[J].Journal of Rocket Propulsion, 2013, 39(1):19-23.
[3] 胡海峰, 高新妮, 凌前程, 等.火箭发动机喷管分离流动仿真分析[J].火箭推进, 2014, 40(6):24-30.
HU H F, GAO X N, LING Q C, et al.Simulation analysis on separation flow in rocket engine nozzle[J].Journal of Rocket Propulsion, 2014, 40(6):24-30.
[4] 吴盛豪, 房詠柳, 陈吉明, 等.超声速喷管性能优化研究与应用[J].航空动力学报, 2017, 32(9):2139-2144.
[5] 王一白, 梁远舰, 赵宇辉, 等.抛物线喷管型面参数对流动分离影响的数值模拟[J].航空动力学报, 2017, 32(4):955-960.
[6] ARAKI L K, MARCHI C H.Verification and validation of numerical solutions of two-dimensional reactive flow in rocket engine nozzles[J].Applied Mathematical Modelling, 2017, 52:544-557.
[7] KARNAL M, BATUL B.Estimation of exhaust gas temperature of the rocket nozzle using hybrid approach[J].Journal of Thermal Science, 2016, 25(6):485-491.
[8] SRINIVAS G, POTTI S R.Numerical simulation of rocket nozzle[J].Advanced Materials Research, 2014, 984/985:1210-1213.
[9] 陈伟, 梁国柱.基于CFD的多级推力固体火箭发动机轴对称喷管型面优化与高精度性能预估[J].固体火箭技术, 2014, 37(1):30-36.
[10] YUMU
?塁
AK M, EYI S.Design optimization of rocket nozzles in chemically reacting flows[J].Computers & Fluids, 2012, 65:25-34.
[11] OGAWA H,BOYCE R R.Nozzle design optimization for axisymmetric scramjets by using surrogate-assisted evolutionary algorithms[J].Journal of Propulsion and Power, 2012, 28(6):1324-1338.
[12] POWELL W B.ICRPG liquid propellant thrust chamber performance evaluation methodology[J].Journal of Spacecraft and Rockets, 1970, 7(1):105-108.
[13] GORDON S, MCBRIDE B J.Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations:NASA SP-273[R].Washington, D.C.:NASA Lewis Research Center, 1976.
[14] NICKERSON G, DANG L.A shock wave capability for the improved Two-Dimensional Kinetics(TDK)computer program[R].NASA-CR-171302, 1984.
[15] KAWASAKI A H,COATS D E. TDKP:A 2-phase version of TDK[Z].1991.
[16] NICKERSON G, JOHNSON C.A soot prediction model for the TDK computer program[C]//28th Joint Propulsion Conference and Exhibit.Reston, Virginia:AIAA, 1992.
[17] DUNN S, COATS D.Nozzle performance predictions using the TDK 97 code[C]//33rd Joint Propulsion Conference and Exhibit.Reston, Virginia:AIAA, 1997.
[18] DUNN S, COATS D.Optimum nozzle contours for aerospike nozzles using the TDK 99TM computer code[EB/OL].https://www.researchgate.net/publication/268414880_optimum_nozzle_contours_for_aerospike_nozzles_using_the_tdk_99_tm_computer_code,2014.
[19] MANSKI D, HAGEMANN G.Influence of rocket design parameters on engine nozzle efficiencies[C]//30th Joint Propulsion Conference and Exhibit.Reston, Virigina:AIAA, 1994.
[20] MANSKI D, HAGEMANN G.Influence of rocket design parameters on engine nozzle efficiencies[J].Journal of Propulsion and Power, 1996, 12(1):41-47.
[21] SUTTON G P, BIBLARZ O.Rocket propulsion elements[M].New York:John Wiley & Sons Inc, 2016.
[22] SHU C W.High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD[J].International Journal of Computational Fluid Dynamics, 2003, 17(2):107-118.
[23] 刘君, 周松柏, 徐春光.超声速流动中燃烧现象的数值模拟方法及应用[M].长沙:国防科技大学出版社, 2008.
[24] NICKERSON G R, DANG L D.Improved two-dimensional kinetics(TDK)computer program[R].NASA-CR-170922, 1983.