|Table of Contents|

Critical speed identification of quasi-rigid rotor for turbo-pump(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年03期
Page:
25-31
Research Field:
研究与设计
Publishing date:

Info

Title:
Critical speed identification of quasi-rigid rotor for turbo-pump
Author(s):
HUANG Jinping XUE Jie DOU Yu QIN Jie LEI Dangbin
(Science and Technology on Liquid Rocket Engine Laboratory,Xian Aerospace Propulsion Institute,Xian 710100, China)
Keywords:
turbo-pump rotor gravity sub-criticality critical speed
PACS:
V43
DOI:
-
Abstract:
Taking the Jeffcott rotor system as the study object, the phenomenon of gravity subcriticality is introduced theoretically.On the basis of the finite element model of rotating shaft and the correction of bearing support stiffness, the first two critical speeds and modes of the turbo-pump of a large thrust liquid rocket engine with staged combustion cycle are simulated.Through the high speed operation test, the first two critical speeds of the rotor have been identified with the help of gravity subcriticality, and compared with the identification results and simulation results of full speed operation, the errors of the first-order and the second-order critical speed identification results were less than 4.74 and 6.74, respectively.The results show that the slight change of rolling body contacting state of angular contact bearing will change the bearing stiffness and the rotor system response at high speed, so it is difficult to accurately identify the critical speed from the response data in the full speed range.The running stability of the rolling bearing-rotor is good at low speed and the identification of rotor critical speed(especially the first-order critical speed identification)using the gravity subcritical method based on the data of low speed operation has a high accuracy.

References:

[1] 窦唯,褚宝鑫.支承总刚度对涡轮泵转子临界转速及稳定性的影响[J].火箭推进,2014,40(1):30-38.
DOU W,CHU B X.Effect of bearing supporting stiffness on dynamic stability and critical speed of turbopump rotor system[J].Journal of Rocket Propulsion,2014,40(1):30-38.
[2] 李振将,王志峰,宋满存,等.超高速涡轮泵轴系临界转速计算方法及影响因素分析[J].燃气涡轮试验与研究,2017,30(1):58-62.
[3] 李超,刘延峰,艾丽昆.基于混合模型的转子临界转速计算[J].振动与冲击,2010,29(11):245-248.
[4] 廖明夫.航空发动机转子动力学[M].西安:西北工业大学出版社,2015.
[5] MICHEL L,GUY F.Rotordynamics prediction in engineering[M].New York:John Wiley & Sons Ltd,1997.
[6] 夏德新.高压多级氢涡轮泵转子动力学设计与试验研究[J].导弹与航天运载技术,2001(6):21-26.
[7] 王毅,林茂武,肖忠会.离心压缩机转子临界转速测试与分析[J].风机技术,2013,55(4):27-32.
[8] 蔡乾杰.小型涡扇发动机高速柔性转子系统动力学设计及试验研究[D].上海:上海交通大学,2018.
[9] 罗巧军,褚宝鑫,须村.氢涡轮泵次同步振动问题的试验研究[J].火箭推进,2014,40(5):14-19.
LUO Q J,CHU B X,XU C.Experimental research for sub-synchronous vibration problems of hydrogen turbopump[J].Journal of Rocket Propulsion,2014,40(5):14-19.
[10] 贾武同.大型水轮发电机组轴系临界转速模拟试验研究[J].机械强度,1999,21(1):7-9.
[11] 何鹏,刘占生,黄飞淋,等.拉杆转子临界转速随拉紧力变化规律试验[J].振动·测试与诊断,2014,34(4):644-649.
[12] 顾家柳,丁奎元,刘启洲,等.转子动力学[M].北京:国防工业出版社,1985.
[13] 闻邦椿.高等转子动力学:理论、技术与应用[M].北京:机械工业出版社,2000.
[14] 石清鑫,袁奇,胡永康.250 t高速动平衡机摆架的动刚度分析[J].机械工程学报,2011,47(1):75-79.
[15] 李玲玲,王克明.某型航空发动机后支承动刚度的有限元计算[J].沈阳航空工业学院学报,2007,24(3):5-7.
[16] 《航空发动机设计手册》总编委会.航空发动机设计手册(第19册):转子动力学及整机振动[M].北京:航空工业出版社,2000.
[17] JANG G,JEONG S W.Vibration analysis of a rotating system due to the effect of ball bearing waviness[J].Journal of Sound and Vibration,2004,269(3/4/5):709-726.
[18] 邓四二,王燕霜,李新宁.轴承预紧力与系统固有频率关系的试验[J].航空动力学报,2010,25(8):1883-1887.
[19] 赵耿,刘保国,冯伟,等.轴承预紧力对转子系统静动态特性的影响[J].动力学与控制学报,2018,16(6):520-525.
[20] BENTLY D E,CHARLES T H.Fundamentals of rotating machinery diagnostics[M].Minden,NV:Bently Pressurized Bearing Press,2002.

Memo

Memo:
-
Last Update: 1900-01-01