|Table of Contents|

Intelligent anomaly detection of liquid rocket engine with multi-source data(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年03期
Page:
79-86
Research Field:
测控与试验
Publishing date:

Info

Title:
Intelligent anomaly detection of liquid rocket engine with multi-source data
Author(s):
LIU Zijun1 FENG Yong2 CHEN Jinglong2 WANG Jun1 ZHANG Zhiwei1
(1.Xian Aerospace Propulsion Institute, Xian 710100, China 2.State Key Laboratory of Manufacturing and Systems Engineering, Xian Jiaotong University, Xian 710049, China)
Keywords:
liquid rocket engine anomaly detection autoencoding generative adversarial network multi-source data
PACS:
V434,TP391
DOI:
-
Abstract:
To improve the reliability and safety of the space launch mission, the intelligent anomaly detection technology of liquid rocket engine was studied.Aiming at the problems of traditional methods such as low detection accuracy, relying on expert experience and prior knowledge, and large amount of data needed, a deep learning was proposed to build an autoencoding generative adversarial network to train the multi-source data under the engine health state.The reconstruction loss and discriminant score of input data were tested, and the intelligent anomaly detection of liquid rocket engine was completed.The analysis results of the ground hot test data for a liquid rocket engine show that this method achieves 96.55 test accuracy, and the 100 accuracy can be obtained by using the neighboring information.It can be effectively used for the anomaly detection of liquid rocket engine.

References:

[1] 赵松波.基于改进优化算法的液体火箭发动机故障检测与诊断研究[D].天津:天津理工大学,2019.
[2] 李艳军.新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D].长沙:国防科学技术大学,2014.
[3] 吴建军,程玉强,崔星.液体火箭发动机健康监控技术研究现状[J].上海航天,2020,37(1):1-10.
[4] MARZAT J,PIET-LAHANIER H,DAMONGEOT F,et al.Model-based fault diagnosis for aerospace systems:a survey[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2012,226(10):1329-1360.
[5] 晏政.航天器推进系统基于定性模型的故障诊断方法研究[D].长沙:国防科学技术大学,2013.
[6] DJEBKO K,PUPPE F,KAYAL H.Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite[EB/OL].https://www.researchgate.net/publication/336045357_Model-Based_Fault_Detection_and_Diagnosis_for_Spacecraft_with_an_Application_for_the_SONATE_Triple_Cube_Nano-Satellite,2019.
[7] CHA J,KO S,PARK S Y,et al.Fault detection and diagnosis algorithms for transient state of an open-cycle liquid rocket engine using nonlinear Kalman filter methods[J].Acta Astronautica,2019,163:147-156.
[8] GUEDDI I,NASRI O,BENOTHMAN K,et al.VPCA-based fault diagnosis of spacecraft reaction wheels[C]//2015 XXV International Conference on Information,Communication and Automation Technologies(ICAT).New York:IEEE,2015.
[9] 刘英元,陈海峰,耿直,等.液体火箭发动机振动故障特征信号提取方法[J].火箭推进,2019,45(1):77-82.
LIU Y Y,CHEN H F,GENG Z,et al.Extraction method of characteristic signal for vibration fault of liquid rocket engine[J].Journal of Rocket Propulsion,2019,45(1):77-82.
[10] 张翔,徐洪平,安雪岩,等.基于马氏距离的液体火箭发动机稳态过程故障程度评估方法[J].计算机测量与控制,2015,23(8):2745-2748.
[11] 张翔,徐洪平,安雪岩,等.基于聚类分析的液体火箭发动机稳态过程故障程度评估方法[J].导弹与航天运载技术,2015(4):24-26.
[12] 聂侥.基于过程神经网络的液体火箭发动机故障预测方法研究[D].长沙:国防科学技术大学,2017.
[13] 孙成志,闫晓东.基于神经网络和证据理论的火箭发动机故障诊断[J].宇航总体技术,2020,4(4):20-30.
[14] 彭军,郭晨阳,张勇,等.基于深度学习的航空发动机部件故障诊断[J].系统仿真技术,2018,14(1):20-24.
[15] AN J,CHO S.Variational autoencoder based anomaly detection using reconstruction probability[EB/OL].https://www.semanticscholar.org/paper/Variational-Autoencoder-based-Anomaly-Detection-An-Cho/061146b1
d7938d7a8dae70e3531a00fceb3c78e8,2015.
[16] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//28th Neural Information Processing Systems(NIPS).Montreal,Canada:[s.n.],2014.
[17] SABOKROU M,KHALOOEI M,FATHY M,et al.Adversarially learned one-class classifier for novelty detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2018.
[18] SCHLEGL T,SEEB?K P,WALDSTEIN S M,et al.F-AnoGAN:fast unsupervised anomaly detection with generative adversarial networks[J].Medical Image Analysis,2019,54:30-44.
[19] 张克明,蔡远文,任元.基于生成对抗网络的航天异常事件检测方法[J].北京航空航天大学学报,2019,45(7):1329-1336.
[20] JOLICOEUR-MARTINEAU A.The relativistic discriminator:a key element missing from standard GAN[EB/OL].https://www.semanticscholar.org/paper/The-relativistic-discriminator3A-a-key-element-from-Jolicoeur-Martineau/dd2ebc42a1a4491b4179dec0ca8686d5c66f6bfe,2018.
[21] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[22] SHEN X,AGRAWAL S.Kernel density estimation for an anomaly based intrusion detection system[EB/OL].https://www.researchgate.net/publication/221188648_Kernel_Density_Estimation_for_An_Anomaly_Based_Intrusion_Detection_System,2006.

Memo

Memo:
-
Last Update: 1900-01-01