[1] 赵松波.基于改进优化算法的液体火箭发动机故障检测与诊断研究[D].天津:天津理工大学,2019.
[2] 李艳军.新一代大推力液体火箭发动机故障检测与诊断关键技术研究[D].长沙:国防科学技术大学,2014.
[3] 吴建军,程玉强,崔星.液体火箭发动机健康监控技术研究现状[J].上海航天,2020,37(1):1-10.
[4] MARZAT J,PIET-LAHANIER H,DAMONGEOT F,et al.Model-based fault diagnosis for aerospace systems:a survey[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2012,226(10):1329-1360.
[5] 晏政.航天器推进系统基于定性模型的故障诊断方法研究[D].长沙:国防科学技术大学,2013.
[6] DJEBKO K,PUPPE F,KAYAL H.Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite[EB/OL].https://www.researchgate.net/publication/336045357_Model-Based_Fault_Detection_and_Diagnosis_for_Spacecraft_with_an_Application_for_the_SONATE_Triple_Cube_Nano-Satellite,2019.
[7] CHA J,KO S,PARK S Y,et al.Fault detection and diagnosis algorithms for transient state of an open-cycle liquid rocket engine using nonlinear Kalman filter methods[J].Acta Astronautica,2019,163:147-156.
[8] GUEDDI I,NASRI O,BENOTHMAN K,et al.VPCA-based fault diagnosis of spacecraft reaction wheels[C]//2015 XXV International Conference on Information,Communication and Automation Technologies(ICAT).New York:IEEE,2015.
[9] 刘英元,陈海峰,耿直,等.液体火箭发动机振动故障特征信号提取方法[J].火箭推进,2019,45(1):77-82.
LIU Y Y,CHEN H F,GENG Z,et al.Extraction method of characteristic signal for vibration fault of liquid rocket engine[J].Journal of Rocket Propulsion,2019,45(1):77-82.
[10] 张翔,徐洪平,安雪岩,等.基于马氏距离的液体火箭发动机稳态过程故障程度评估方法[J].计算机测量与控制,2015,23(8):2745-2748.
[11] 张翔,徐洪平,安雪岩,等.基于聚类分析的液体火箭发动机稳态过程故障程度评估方法[J].导弹与航天运载技术,2015(4):24-26.
[12] 聂侥.基于过程神经网络的液体火箭发动机故障预测方法研究[D].长沙:国防科学技术大学,2017.
[13] 孙成志,闫晓东.基于神经网络和证据理论的火箭发动机故障诊断[J].宇航总体技术,2020,4(4):20-30.
[14] 彭军,郭晨阳,张勇,等.基于深度学习的航空发动机部件故障诊断[J].系统仿真技术,2018,14(1):20-24.
[15] AN J,CHO S.Variational autoencoder based anomaly detection using reconstruction probability[EB/OL].https://www.semanticscholar.org/paper/Variational-Autoencoder-based-Anomaly-Detection-An-Cho/061146b1
d7938d7a8dae70e3531a00fceb3c78e8,2015.
[16] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//28th Neural Information Processing Systems(NIPS).Montreal,Canada:[s.n.],2014.
[17] SABOKROU M,KHALOOEI M,FATHY M,et al.Adversarially learned one-class classifier for novelty detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2018.
[18] SCHLEGL T,SEEB?K P,WALDSTEIN S M,et al.F-AnoGAN:fast unsupervised anomaly detection with generative adversarial networks[J].Medical Image Analysis,2019,54:30-44.
[19] 张克明,蔡远文,任元.基于生成对抗网络的航天异常事件检测方法[J].北京航空航天大学学报,2019,45(7):1329-1336.
[20] JOLICOEUR-MARTINEAU A.The relativistic discriminator:a key element missing from standard GAN[EB/OL].https://www.semanticscholar.org/paper/The-relativistic-discriminator3A-a-key-element-from-Jolicoeur-Martineau/dd2ebc42a1a4491b4179dec0ca8686d5c66f6bfe,2018.
[21] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[22] SHEN X,AGRAWAL S.Kernel density estimation for an anomaly based intrusion detection system[EB/OL].https://www.researchgate.net/publication/221188648_Kernel_Density_Estimation_for_An_Anomaly_Based_Intrusion_Detection_System,2006.