|Table of Contents|

Thermal design and flight verification of orbit control unit in core cabin of space station(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年04期
Page:
59-65
Research Field:
目次
Publishing date:

Info

Title:
Thermal design and flight verification of orbit control unit in core cabin of space station
Author(s):
CHEN Yangchun LI Shigong HU Chengyun
(Shanghai Engineering Research Center of Space Engine, Shanghai Institute of Space Propulsion, Shanghai 201112, China)
Keywords:
space station core cabin orbit control unit thermal design verification
PACS:
V434
DOI:
-
Abstract:
In order to verify whether the thermal control design of the orbit control unit in the core cabin can meet the requirements of the temperature under any working condition during the mission of the space station, I-DEAS/TMG software was used to determine the heating power required by the orbit control unit under extreme low temperature conditions, and the maximum temperature under extreme high temperature conditions was predicted.The on-orbit flight shows that the flight temperature of the orbit control unit verifies the correctness of the theoretical calculation, and the deviation between them is about 3.7.The larger the area of nozzles exposed to the sun, the higher the temperature of the heads and solenoid valves.When the solar angle is equal to 58°, the illuminated area of the nozzle is the largest.Under low temperature conditions, the temperature of unit head with propellant flow and solenoid valve is higher than 6.8 ℃,which meets the index requirement higher than 0 ℃.Inertial flight attitude belongs to high temperature condition for the pitching unit, which is different from the thermal control coating state of the previous unit, ensures that the temperature of the solenoid valves is lower than 40 ℃ under extreme high temperature conditions, which provides guarantee for the reliable operation of the solenoid valves during the 15 year mission of the space station.

References:

[1] GILMORE D G.Spacecraft thermal control handbook[M].2nd ed.El Segundo,California:Aerospace Press,2002.
[2] 范含林.载人航天器热管理技术发展综述[J].航天器工程,2007,16(1):28-32.
[3] 范含林,黄家荣.载人航天器热控制技术问题探讨[J].载人航天,2010,16(2):40-44.
[4] 闵桂荣.卫星热控制技术[M].北京:宇航出版社,1991.
[5] 侯增祺,胡金刚.航天器热控制技术:原理及其应用[M].北京:中国科学技术出版社,2007.
[6] 陈阳春.25 N双组元发动机热控研究[J].火箭推进,2015,41(2):38-42.
CHEN Y C. Study on thermal control of 25 N bipropellant engine[J]. Journal of Rocket Propulsion,2015,41(2):38-42.
[7] 胡海峰,鲍福廷,蔡强,等.液体姿控火箭发动机地面试验热结构分析[J].航空动力学报,2011,26(2):442-447.
[8] 谭维炽,胡金刚.航天器系统工程[M].北京:中国科学技术出版社,2009.
[9] 肖泽娟,程惠尔,李鹏.姿控发动机真空深冷环境中传热研究[J].热科学与技术,2005,4(2):101-106.
[10] 徐繁荣,汪琼华,王晓红.长二丁运载火箭二级姿控发动机热控设计及其试验验证[J].上海航天,2007,24(5):41-46.
[11] 孙冰,蔡国飙,陈全,等.单组元发动机热回浸现象的理论分析[J].推进技术,1997,18(3):40-44.
[12] 韩崇巍,赵啟伟,张旸,等.第二代490 N发动机热控设计[J].航天器环境工程,2013,30(4):388-391.
[13] 王爱华,陈阳春,丁卫华.空间实验室490 N发动机热控设计[J].火箭推进,2018,44(3):12-15.
WANG A H,CHEN Y C,DING W H.Thermal control design of 490 N engine in space laboratory[J].Journal of Rocket Propulsion,2018,44(3):12-15.
[14] 张忠利.姿控发动机热防护研究[J].火箭推进,2008,34(3):17-22.
ZHANG Z L.Investigation on thermal protection for attitude correction liquid rocket engine[J].Journal of Rocket Propulsion,2008,34(3):17-22.
[15] 方磊,刘伟.姿控用再生冷却推力室传热特性研究[J].火箭推进,2008,34(6):6-13.
FANG L,LIU W.Research on heat transfer characteristic of regeneratively cooled attitude control engine thrust chamber[J].Journal of Rocket Propulsion,2008,34(6):6-13.
[16] 刘海娃,胡承云,叶胜.HAN基无毒单组元发动机热控研究[J].火箭推进,2020,46(4):38-45.
LIU H W,HU C Y,YE S.Study on thermal control of HAN-based green monopropellant thruster[J].Journal of Rocket Propulsion,2020,46(4):38-45.
[17] 刘昌国,关亮,施伟,等.单组元300 N发动机低温试验研究[J].推进技术,2021,42(7):1662-1670.
[18] 卢威,黄家荣,范宇峰,等.载人航天器密封舱流动和传热数值模型及其地面验证[J].宇航学报,2011,32(5):959-965.
[19] 叶宏,焦冬生,徐斌,等.I-DEAS热分析实用教程[M].合肥:中国科学技术大学出版社,2003.
[20] SCHNEIDER G E,RAW M J.Control volume finite-element method for heat transfer and fluid flow using colocated variables:1.computational procedure[J].Numerical Heat Transfer,1987,11(4):363-390.
[21] KARIMIAN S,SCHNEIDER G.Pressure-based control-volume finite-element method for flow at all speeds[C]//6th Joint Thermophysics and Heat Transfer Conference.Reston,Virginia:AIAA,1994.
[22] 钟杨帆,朱敏波,魏锋.I-DEAS在航天器热分析中的应用[J].计算机工程与设计,2006,27(12):2306-2308.

Memo

Memo:
-
Last Update: 1900-01-01