|Table of Contents|

Buckling of the reinforced S-shaped bellows under internal pressure(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年04期
Page:
66-71
Research Field:
目次
Publishing date:

Info

Title:
Buckling of the reinforced S-shaped bellows under internal pressure
Author(s):
HUO Shihui1 XU Hongwei1 ZHU Weiping2 YUAN Zhe3
(1.Science and Technology on Liquid Rocket Engine Laboratory, Xian 710100, China 2.Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China 3.Xian Aeronautical University, Xian 710077, China)
Keywords:
reinforced S-shaped bellows buckling column instability critical internal pressure boundary influence coefficient
PACS:
V475
DOI:
-
Abstract:
In the present study, the analysis method of critical pressure of reinforced s-shaped bellows was carried out based on the theoretical and numerical simulation analysis.Firstly, the axial stiffness of reinforced s-shaped bellows was obtained based on the finite element method.The bending stiffness of bellows was obtained according to the minimal axial stiffness.Then, boundary influence coefficient of bellows was analyzed based on axial control equation of thin walled cylinder under the inner pressure.At last, the analysis method of critical load of reinforced S-shaped bellows was put forward based on Euler equation and EJMA, which takes plasticity, inner pressure and boundary condition into account and actually reflects the bellows condition.It can be well used in the buckling analysis of reinforced S-shaped bellows.

References:

[1] HUO S H,YAN W Z,XU X J,et al.Bending characteristics of the reinforced S-shaped bellows under internal pressure[J].International Journal of Pressure Vessels and Piping,2021,192:104412.
[2] United States Atomic Energy Commission.Atomic international[R].NAA-SR-4524,1964.
[3] HARINGX J A.Instability of bellows subjected to internal pressure[J].Philips Research Report,1952,7:112-118.
[4] ZHU W P,HUANG Q,GUO P.General solution for C-shaped bellows overall-bending problems[C]//SHANMUGAM N E,LIEW Y J R,THEVENDRAN V.Thin-walled structures-research and development.Oxford:Elsevier Science Ltd,1998.
[5] ZHU W P,GUO P.Application of non-homogeneous solution for equations of slender ring shells to overall-bending problem of Ω-shaped bellows[J].Journal of Shanghai University(English Edition),1999,3(2):121-126.
[6] 朱卫平,郭平,黄黔.U型波纹管整体弯曲问题的一般解[J].应用数学和力学,2000,21(4):331-341.
[7] 朱卫平.波纹管在内压作用下柱失稳临界压力的计算[J].力学与实践,2002,24(5):32-35.
[8] 陈晔.波纹管的平面稳定性研究[D].南京:南京工业大学,2001.
[9] 陈晔,李永生,顾伯勤,等.循环载荷下波纹管应变累计及平面失稳[J].机械强度,2001,30(5):24-27.
[10] 钟玉平,哈学基,段玫.内、外压载荷下无加强U形波纹管平面失稳研究[C]//第七届全国膨胀节学术会议.南京:中国机械工程学会,2003.
[11] 钟玉平,李杰,闫廷来,等.基于有限元分析的波纹管强度应力提取与计算[J].材料开发与应用,2018,33(6):101-105.
[12] 张道伟.拉伸条件下金属波纹管外压稳定性研究[D].洛阳:洛阳船舶材料研究所,2004.
[13] 陈赵勤,马咏梅,马传鑫,等.S形焊接金属波纹管外压失稳临界极限压力研究[J].石油化工设备,2021,50(4):8-12.
[14] 张玉田.薄壁波纹管拉伸位移条件下周向稳定性研究[D].西安:西北工业大学,2007.
[15] 谈卓君,曹丽亚,廖日东,等.多层U形波纹管轴向刚度及临界载荷的有限元分析[J].机械强度,2004,26(1):49-53.
[16] 束振,马咏梅,李何钰秋,等.S形焊接金属波纹管弯曲刚度分析[J].石油化工设备,2021,50(5):22-26.
[17] 李宁,穆塔里夫·阿赫迈德.波纹管机械密封多体多场热流固耦合性能分析[J].机床与液压,2021,49(14):137-141.
[18] 徐学军,任武,袁喆,等.增强S形波纹管结构耐压强度分析技术[J].火箭推进,2019,45(1):19-24.
XU X J,REN W,YUAN Z,et al.Compression strength analysis of the reinforced S-shaped bellows[J].Journal of Rocket Propulsion,2019,45(1):19-24.
[19] 朱卫平,黄黔,郭平.柔性圆环壳在子午面内整体弯曲的复变量方程及细环壳的一般解[J].应用数学和力学,1999,20(9):889-895.

Memo

Memo:
-
Last Update: 1900-01-01