|Table of Contents|

Simulation on underwater ignition process and its influencing factors(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2022年05期
Page:
76-83
Research Field:
目次
Publishing date:

Info

Title:
Simulation on underwater ignition process and its influencing factors
Author(s):
LIU Wenjie LI Dong CAI Qiang LI Xiang ZHANG Zheng
(China Academy of Launch Vehicle Technology, Beijing 100076, China)
Keywords:
underwater ignition gas jet ignition depth velocity vaporization
PACS:
V435
DOI:
-
Abstract:
The flow field characteristics of underwater ignition are completely different from ignition in the air and are very sensitive to the underwater working environment.In order to study the unsteady development process of underwater ignition and the influence law of various factors(such as depth, velocity, vaporization), a variety of underwater ignition conditions were studied by numerical simulation, utilizing the VOF multiphase model and SST k-ω turbulence model.The results show that, the process of underwater ignition can be divided into three stages: initial stage, oscillatory stage and stable stage.In the stable stage, the gas bubble can be divided into jet region, transition region and mixing region, and the division of different stages is affected by depth, velocity and so on.Oscillation is the most important characteristic in the working process.The working state of gas jet determines the characteristics of flow field and thrust.Velocity mainly affects the evolution law of gas bubble shape, which shows that the axial length and necking degree increases.Due to the influence of vaporization effect, the phenomenon of water vapor accumulation appears in the flow field, but the influence on the flow field and engine thrust are not significant due to the short interaction time and small amount of vapor.

References:

[1] 张春,郁伟,王宝寿.水下超声速燃气射流的初期流场特性研究[J].兵工学报,2018,39(5):961-968.
[2] 贾有军,张胜敏,尤俊峰,等.固体发动机水下点火尾流变化过程试验研究[J].固体火箭技术,2015,38(5):660-663.
[3] SHI H H,WANG B Y,DAI Z Q.Research on the mechanics of underwater supersonic gas jets[J].Science China Physics,Mechanics and Astronomy,2010,53(3):527-535.
[4] BECKSTEAD M,JING Q,VOROZHTSOV A,et al.Experimental investigations of the underwater ignition of the solid rocket propellant[C]//36th AIAA Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,1998.
[5] JIA Y J,LIU L X.A test study of underwater ignition of solid rocket motor[C]//60th International Astronautical Congress.[S.l.]:IAC,2009.
[6] 张磊,佘湖清.固体火箭发动机水下工作推力特性的实验研究[J].含能材料,2020,28(12):1184-1189.
[7] 黄楠,陈志华,王争论.水下超声速气体射流线性稳定性研究[J].推进技术,2021,42(3):550-559.
[8] 曹嘉怡,宫兆新,鲁传敬,等.发动机水下点火的燃气射流特性研究[C]//中国力学学会.第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会论文集:B水动力学基础.上海:《水动力学研究与进展》杂志社,2014.
[9] 许海雨,罗凯,刘日晨.水下超声速气流流场非定常特性研究[J].推进技术,2019,40(11):2618-2625.
[10] 陈伟,时素果,张志曈,等.水下点火气液两相流数值计算研究[C]//第十一届全国流体力学学术会议论文摘要集.深圳:中国力学学会,2020.
[11] 朱卫兵,陈宏,黄舜.水下高速射流气泡变化过程数值研究[J].推进技术,2010,31(4):496-502.
[12] 向敏,吴雄,张为华,等.水下固体发动机尾流场数值仿真[J].推进技术,2009,30(4):479-483.
[13] MA Y L,JIANG Y,HAO J G,et al.Research on the initial ignition of the underwater launching solid rocket motor[J].Journal of Beijing Institute of Technology,2010,19(4):422-426.
[14] 唐云龙.深水条件下固体火箭发动机燃气射流与推力特性研究[D].北京:北京理工大学,2016.
[15] 张有为,王晓宏.导弹水下点火推力峰值问题的数值研究[J].应用力学学报,2007,24(2):298-301.
[16] 张有为,王晓宏.导弹尾部外形对发动机水下点火推力的影响[J].航空动力学报,2008,23(5):927-931.
[17] 魏海鹏,郭凤美,权晓波.水下气体射流数值研究[J].导弹与航天运载技术,2009(2):37-39.
[18] 王利利,刘影,李达钦,等.固体火箭发动机水下超音速射流数值研究[J].兵工学报,2019,40(6):1161-1170.
[19] 张正,李冬,张木,等.筒口流场及其对发动机水下点火影响的数值模拟[J].导弹与航天运载技术,2016(5):80-86.
[20] 祁晓斌,袁绪龙,徐保成,等.导弹水下发射近筒口点火时机选择影响研究[J].推进技术,2019,40(7):1449-1457.
[21] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
[22] MUSAFERIJA S,PERIC M.Computation of free-surface flows using interface-tracking and interface-capturing methods[M]//MAHRENHOLTZ O,MARKIEWICZ M. Nonlinear water waves interaction.[S.l.]:WIT Press,1999.

Memo

Memo:
-
Last Update: 1900-01-01