|Table of Contents|

Calculation method of insulation power of high pressure hybrid gas turbine for liquid rocket engine(PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年01期
Page:
65-71
Research Field:
目次
Publishing date:

Info

Title:
Calculation method of insulation power of high pressure hybrid gas turbine for liquid rocket engine
Author(s):
SU Zhan GAO Yushan QIN Yanping ZHANG Hang ZHANG Xiaoguang XING Lixiang
(Xian Aerospace Propulsion Institute, Xian 710100, China)
Keywords:
high pressure gas turbine adiabatic work cubic state equation mixed rule
PACS:
V430
DOI:
-
Abstract:
In the design of liquid rocket engine, the thermal insulation work of the turbine is an important design parameter that affects the engine thrust, and the accuracy of the calculation directly affects the efficiency of the turbine design.Under high pressure, the effect of real gas is prominent, which affects the accuracy of adiabatic work calculation and must be taken into account.This paper compares and analyzes the accuracy of three cubic equation[Soave-Redlich-Kwong(SRK),Peng-Robinson(PR),Redlich-Kwong- Peng-Robinson(RK-PR)] of state describing the thermodynamic properties of oxygen, methane and hydrogen.The results show that the accuracy of SRK equation is the best, the maximum error with NISTs data is less than 2.Besides, the high-pressure turbines gas is a multi-component mixture, and the calculation of the adiabatic work should consider the mixing rule.Assuming the expansion of the turbine is isentropic, the formulas of the ideal gas hypothesis and the turbine adiabatic work considering the equation under the mixing rule are derived respectively.And it is proved that the calculation s error of the ideal gas adiabatic work is much higher than the real gas.Finally, an algorithm for calculating the thermal insulation work of high-pressure turbo-engines is presented, which is calculating the approximate adiabatic work of high-pressure turbine by compressing factor, and the maximum error between the method and the theoretical method is less than 3.

References:

[1] NASA.Space shuttle main engine(SSME)[R].NASA-BC98-04.
[2] 朱洪波,公茂琼,张宇,等.两种立方型状态方程相平衡推算中相互作用系数的研究进展[J].低温工程,2005(5):7-12.
[3] 王鹏武.全流量补燃循环液氧/甲烷发动机系统分析[J].火箭推进,2004,30(6):15-18.
WANG P W.Analysis of FFSCC LOX/methane rocket engine system[J].Journal of Rocket Propulsion,2004,30(6):15-18.
[4] 刘登丰,黄仕启,周伟.登月舱用深度变推下降级发动机系统方案研究[J].火箭推进,2014,40(4):22-28.
LIU D F,HUANG S Q,ZHOU W.System study of deep throttling descent rocket engine for lunar lander[J].Journal of Rocket Propulsion,2014,40(4):22-28.
[5] 段小龙,刘站国,王拴虎,等.补燃循环液体火箭发动机大范围工况调节方案研究[J].火箭推进,2004,30(3):1-6.
DUAN X L,LIU Z G,WANG S H,et al.Throttling concept study of staged combustion cycle LRE[J].Journal of Rocket Propulsion,2004,30(3):1-6.
[6] 于志家,杨筱恬.用SRK方程与PR方程求算双组分混合气体热力学性质[J].化工高等教育,2013,30(1):59-62.
[7] ROBINSON D B,PENG D Y.Phase equilibria and fluid properties in the chemical industry[J].ACS Symposium Series,1977(6):60.
[8] 童景山.流体热物性学:基本理论与计算[M].北京:中国石化出版社,2008.
[9] 秦艳平,马冬英,蒲星星,等.真实气体效应对高压涡轮理论绝热功的影响[C]//第四十届技术交流会暨第四届空天动力联合会议论文集.昆明:中国航天第三专业信息网,2019.
[10] 牟斌,江雄,王建涛.低温增压真实气体效应下轴流压缩机功率计算[C]//第九届全国流体力学学术会议论文集.南京:中国力学学会流体力学专业委员会,2016.
[11] MCBRIDE B J,GORDON S,RENO M A.Coefficients for calculating thermodynamic and transport properties of individual species[R].NASA TM-4513.
[12] U.S.Secretary of Commerce.Thermophysical properties of fluid systems[EB/OL].http://webbook.nist.gov/chemistry/fluid,2022.
[13] 汪萍,项曙光.立方型状态方程的混合规则在相平衡计算中的研究[J].河北化工,2004,27(2):47-50.
[14] SCOTT R L.Physical chemistry:An advanced treatise [M].New York:Academic Press,1971.
[15] 卢扬扬.用改进的PR状态方程研究高温高压湿空气的热物性[D].重庆:重庆大学,2009.
[16] 梁燕波,童景山.甲烷-氮混合气体(天然气)低温下的p-V-T关系[J].天然气化工(C1化学与化工),2008,33(2):71-73.
[17] ESPOSITO F,SPINELLI N,VELOTTA R,et al.Dead time correction of time distribution measurements[J].Review of Scientific Instruments,1991,62(11):2822-2827.
[18] WHITTEN C A.Correction procedures for variable intensity neutron time-of-flight measurements[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1991,309(1/2):264-274.
[19] ANSYS Inc.ANSYS CFX-solver theory guide[Z].2013.
[20] INVERNIZZI C M.Thermodynamic fundamentals and applications[M].London:Springer,2013.
[21] GORDON S,MCBRIDE B J,ZEHE M J.NASA glenn coefficients for calculating thermodynamics properties of individual species[R].NASA TP-211556.

Memo

Memo:
-
Last Update: 1900-01-01