|Table of Contents|

Similarity of combustion flow field in LOX/GH2 coaxial injector under variable operating conditions (PDF)

《火箭推进》[ISSN:1672-9374/CN:CN 61-1436/V]

Issue:
2023年02期
Page:
27-34
Research Field:
目次
Publishing date:

Info

Title:
Similarity of combustion flow field in LOX/GH2 coaxial injector under variable operating conditions
Author(s):
KONG Weipeng WANG Tiantai XIE Heng WANG Zhaohui
(Beijing Aerospace Propulsion Institute, Beijing 100076, China)
Keywords:
hydrogen-oxygen expansion cycle rocket engine coaxial shear injector combustion flow field similarity variable operating condition scale technology
PACS:
V434.1
DOI:
-
Abstract:
In order to study the similarity of LOX/GH2 combustion flow field under different chamber pressure, the injector test article was designed, and the spray combustion flow field of LOX/GH2 injector was studied by numerical simulation and hot-fire test.In the numerical simulation, one sixth of the test article was selected for 3D steady state calculation. The turbulence model was based on the SST k-ω model, and the eddy dissipation concept model with chemical reaction mechanism of 9 steps for 6 components was used in the chemical reaction.In addition, the discrete phase model was adopted for the liquid oxygen droplet.A total of 8 typical working conditions were simulated in the range of 2.8-9.8 MPa.In the hot-fire test, LOX/GH2 was used as propellants, and four extrusion heat tests were carried out under three different chamber pressure conditions of 4.5 MPa, 5.4 MPa and 6.8 MPa.The wall heat flux of the combustion chamber was measured by the calorimetric water-cooled body.The simulation and test results show that in the case of the same mixing ratio, temperature and injection speed, the combustion flow field of LOX/GH2 coaxial shear injector is similar under the supercritical pressure of liquid oxygen.While the structure of the combustion flow field is different under the subcritical and supercritical pressure.

References:

[1] PENNER S S.Similarity analysis for chemical reactors and the scaling of liquid fuel rocket engines[R].AD TR-8.
[2] PENNER S S,FUHS A E.On generalized scaling procedures for liquid-fuel rocket engines[J].Combustion and Flame,1957,1(2):229-240.
[3] YANG V.Liquid rocket thrust chambers:Aspects of modeling,analysis,and design[M].Reston,Virigina:AIAA,2004.
[4] KENNY R,MOSER M,HULKA J,et al.Cold flow testing for liquid propellant rocket injector scaling and throttling[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston,Virigina:AIAA,2006.
[5] HULKA J.Scaling of performance in liquid propellant rocket engine combustion devices[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virigina:AIAA,2008.
[6] 沈赤兵,陆政林.相似理论在层板式喷注器试验研究中的应用[J].推进技术,1995,16(1):58-62.
[7] 董锡鉴.相似准则在液体火箭发动机试验中的应用[J].火箭推进,2004,30(1):23-26.
DONG X J.Application of similarity criterion in liquid rocket engine test[J].Journal of Rocket Propulsion,2004,30(1):23-26.
[8] 安红辉,聂万胜.基于瑞利准则的火箭发动机稳定性缩比方法研究[J].导弹与航天运载技术,2016(5):23-27.
[9] WANG X W,CAI G B,JIN P.Scaling of the flowfield in a combustion chamber with a gas-gas injector[J].Chinese Physics B,2010,19(1):19401.
[10] 汪小卫,高玉闪,金平,等.单喷嘴气—气喷注器推力室燃烧流场相似性[J].航空学报,2010,31(8):1538-1545.
[11] 汪小卫,高玉闪,金平,等.单喷嘴大流量气—气喷注器设计与试验[J].航空动力学报,2010,25(3):691-698.
[12] WANG X W,CAI G B,JIN P.Scaling study of the combustion performance of gas-gas rocket injectors[J].Chinese Physics B,2011,20(10):104701.
[13] WANG X W,CAI G B,GAO Y S.Scaling of heat transfer in gas-gas injector combustor[J].Chinese Physics B,2011,20(6):064701.
[14] 高玉闪,刘小勇,金平.全流量补燃循环气气燃烧相似性缩尺试验研究[J].推进技术,2019,40(7):1554-1559.
[15] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].陈文芳,林文漪,译.北京:科学出版社,1994.
[16] 袁磊.氢/氧发动机变工况燃烧特性及其燃烧稳定性研究[D].长沙:国防科学技术大学,2013.
[17] 韩长霖,田原.某缩尺推力室燃烧和传热特性研究[J].火箭推进,2020,46(1):28-34.
HAN C L,TIAN Y.Study on combustion and heat transfer characteristics of a scaled trust chamber[J].Journal of Rocket Propulsion,2020,46(1):28-34.
[18] 聂万胜,丰松江.液体火箭发动机燃烧动力学模型与数值计算[M].北京:国防工业出版社,2011.
[19] DANIEL T,BANUTI D T.Thermodynamic structure of supercritical LOX-GH2 diffusion flames[J].Combustion and Flame,2018,196:364-376.
[20] DAHMS R N,OEFELEIN J C.Atomization and dense-fluid breakup regimes in liquid rocket engines[J].Journal of Propulsion and Power,2015,31(5):1221-1231.
[21] 王治军,常新龙,田干.液体火箭发动机推力室设计[M].北京:国防工业出版社,2014.
[22] 波林,普劳斯尼茨,奥康奈尔.气液物性估算手册[M].赵红玲,王凤坤,陈圣坤,译.北京:化学工业出版社,2006.
[23] 陈国邦,黄永华,包锐.低温流体热物理性质[M].北京:国防工业出版社,2006.
[24] 丰松江,王富,聂万胜.新型低温火箭发动机超临界燃烧研究进展[J].导弹与航天运载技术,2009(6):23-27.
[25] 康忠涛,李向东,毛雄兵,等.液体火箭发动机中气液同轴直流式喷嘴研究综述[J].航空学报,2018,39(9):022221.

Memo

Memo:
-
Last Update: 1900-01-01